Complete Revascularization Using a Patent Left Internal Thoracic Artery and Variable Arterial Grafts in Multivessel Coronary Reoperation

Ho-Ki Min, MD, Young Tak Lee, MD, Wook Sung Kim, MD, Ji-Hyuk Yang, MD, Kiick Sung, MD, Tae-Gook Jun, MD, Pyo Won Park, MD

Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

ABSTRACT

Background: Arterial grafting and complete revascularization are important requirements of coronary surgery to achieve optimum long-term results. In cases involving coronary artery bypass grafting reoperation (redo-CABG), it is sometimes difficult to satisfy these requirements because of the limited availability of grafts. In this study, we constructed composite and sequential grafting with a minimal number of new arterial grafts and a patent left internal thoracic artery (LITA), which sometimes is encountered in preoperative angiography, and we analyzed the results of redo-CABG.

Methods: Between January 2005 and October 2008, 29 patients underwent redo-CABG. Ten patients who had a patent LITA graft in situ were reviewed retrospectively. We performed conventional CABG in 8 patients and on-pump beating-heart CABG in 2 patients. The new arterial grafts for the composite grafts included 7 LITAs and 3 radial arteries. The types of composite grafts included 7 Y grafts, 1 K graft, 1 X graft, and 1 double-Y graft. Overall, we performed 28 distal anastomoses (mean per patient, 2.8 ± 0.7), of which 18 anastomoses were supplied from a patent LITA (mean, 1.8 ± 0.4).

Results: No hospital deaths occurred, and perioperative complications included injury to a LITA, low cardiac output, delirium, and postoperative bleeding in 1 patient each. The mean duration of follow-up was 23.6 ± 16.8 months (range, 2-46 months). There was 1 late death and no recurrent angina during the follow-up period. Follow-up coronary images obtained for 7 patients showed that all of the anastomoses were patent.

Conclusion: Composite and sequential grafting with new arterial grafts and a patent LITA is a safe and effective alternative in patients with multivessel disease undergoing redo-CABG.

INTRODUCTION

Coronary artery bypass grafting (CABG) has been an established treatment for ischemic heart disease. Grafting strategies have evolved from the use of saphenous vein grafts to the use of arterial grafts, which show better patency rates and better long-term results. Of these arterial grafts, the left internal thoracic artery (LITA) has been demonstrated to have a superior graft-patency rate and has provided excellent clinical results, and grafts of the LITA to the left anterior descending artery (LAD) have shown a very high late patency rate [Loop 1986; Cameron 1996]. Recently, total arterial revascularization has been achieved with the use of variable arterial grafts in the expectation of better long-term patency [Calafiore 1994; Tatoulis 1999]. In addition, arterial composite grafts constructed with sequential grafting techniques can increase the number of distal coronary anastomoses with a limited number of grafts while avoiding proximal aortic anastomoses [Fukui 2005]. Because atherosclerosis progresses with age, however, CABG is not curative, and many patients will eventually become candidates for a CABG reoperation (redo-CABG) [Yamamuro 2000].

Complete revascularization is an important goal of CABG for optimal long-term results [Bell 1992; Jones 1996; Scott 2000; Synnergren 2008]; however, the limited number of available grafts may interfere with this goal because of the previous use of multiple grafts and increasing peripheral vascular atherosclerosis with age.

In the setting of a planned redo-CABG in a patient with multivessel disease, physicians sometimes encounter a patent in situ LITA in preoperative angiography evaluations because this vessel has a relatively long-term patency. In such situations, we have constructed composite grafts that use a new arterial free graft and a patent in situ LITA as an inflow in patients with multivessel disease to save the length of the graft to a distal target vessel and maximize the number of distal coronary anastomoses. In this study, we retrospectively reviewed the results of our strategy for redo-CABG.

MATERIALS AND METHODS

Between January 2005 and October 2008, 1658 patients underwent CABG, and 29 patients (1.7%) underwent...
Table 1. Patient Characteristics and Operative Methods*

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age, y</th>
<th>Sex</th>
<th>Patent Target</th>
<th>New Graft for CG</th>
<th>Type of CG</th>
<th>New Target of CG</th>
<th>Additional Bypass</th>
<th>CPB Time, min</th>
<th>ACC Time, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>F</td>
<td>Dx</td>
<td>RA</td>
<td>Y</td>
<td>LAD</td>
<td>GEA-PDA</td>
<td>63</td>
<td>—</td>
</tr>
<tr>
<td>2†</td>
<td>58</td>
<td>M</td>
<td>PDA</td>
<td>RA</td>
<td>Y</td>
<td>OM</td>
<td>GEA-LAD</td>
<td>137</td>
<td>83</td>
</tr>
<tr>
<td>3‡</td>
<td>68</td>
<td>M</td>
<td>—</td>
<td>RA</td>
<td>Y</td>
<td>OM</td>
<td>Free RITA-LAD</td>
<td>125</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>F</td>
<td>LAD</td>
<td>RITA</td>
<td>K</td>
<td>DxA, OM</td>
<td>GEA-PDA</td>
<td>138</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>M</td>
<td>LAD</td>
<td>RITA</td>
<td>Y</td>
<td>OM1, OM2</td>
<td>GEA-PDA</td>
<td>116</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>M</td>
<td>Dx</td>
<td>RITA</td>
<td>X</td>
<td>LAD, OM</td>
<td>GEA-PDA-OM</td>
<td>111</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>61</td>
<td>M</td>
<td>LAD</td>
<td>RITA</td>
<td>dY</td>
<td>DxA, OM, PL</td>
<td>—</td>
<td>109</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>M</td>
<td>LAD</td>
<td>RITA</td>
<td>Y</td>
<td>OM1, OM2, PL, PDA</td>
<td>—</td>
<td>98</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>58</td>
<td>M</td>
<td>LAD</td>
<td>RITA</td>
<td>Y</td>
<td>OM</td>
<td>GEA-PDA, GEA-RITA-PL</td>
<td>107</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td>62</td>
<td>M</td>
<td>LAD</td>
<td>RITA</td>
<td>Y</td>
<td>OM</td>
<td>SVG-PL</td>
<td>127</td>
<td>87</td>
</tr>
</tbody>
</table>

*CG indicates composite graft; CPB, cardiopulmonary bypass; ACC, aortic cross-clamp; Dx, diagonal branch; RA, radial artery; Y, Y composite graft; LAD, left anterior descending artery; GEA, gastroepiploic artery; PDA, posterior descending artery; OM, obtuse marginal branch; RITA, right internal thoracic artery; K, K composite graft; X, X composite graft; dY, double-Y composite graft; PL, posterolateral branch; SVG, saphenous vein graft.

†Patient 2 had a patent LITA-RITA-PDA anastomosis and an occluded LITA-LAD anastomosis according to a preoperative angiography examination after the primary coronary artery bypass grafting was performed with an in situ LITA-LAD anastomosis and a RITA-PDA anastomosis (the RITA was connected to the LITA in a Y configuration; Figure 4A).

‡Patient 3 had a totally occluded in situ LITA-LAD anastomosis, but the proximal LITA segment was visualized to be patent in a preoperative angiography procedure. The proximal segment of the LITA was reused as an inflow for a Y graft (Figure 4B).

reoperation. Of the 29 redo-CABG patients, 10 (0.6%) had a patent in situ LITA during the operation, and we reviewed these cases retrospectively. Generally, our inclusion criteria for reoperation were as follows: (1) stenotic vein grafts that supply the LAD artery or large areas of the myocardium, (2) multivessel disease with abnormal left ventricular dysfunction, and (3) severe symptoms (chest pain, dyspnea, or exercise intolerance) combined with an ischemia-producing pathway with an inadequate coronary anatomy for percutaneous intervention, even if patients had a patent graft. The operative indications for the 10 patients with a patent LITA included severe symptoms with inadequate anatomy in 4 patients, left ventricular dysfunction with an LAD lesion or LAD graft failure in 3 patients, left ventricular dysfunction with symptoms in 2 patients, and failure of a graft to the LAD in 1 patient. The mean (±SD) patient age was 62.5 ± 7.7 years (range, 51-74 years), and the majority of the patients were men (80%; n = 8). The mean left ventricle ejection fraction was 52.3% ± 10.3% (range, 35%-67%), and the echocardiograms indicated no significant mitral regurgitation. All procedures were elective. Four patients (40%) presented with hypertension, 3 patients had diabetes, 1 patient had renal insufficiency (defined by a preoperative serum creatinine concentration ≥2.2 mg/dL), and 1 patient had severe left ventricle dysfunction (defined by a left ventricle ejection fraction ≤35%). The quality of the distal anastomoses from a patent in situ LITA was graded according to the Fitzgibbon classification system in preoperative angiography [Fitzgibbon 1996], as follows: grade A in 9 patients and grade X in 1 patient who had patency of the proximal LITA segment. Of the 9 grade A patients, distal target vessels included the LAD in 6 patients, the diagonal branch in 2 patients, and the posterior descending artery (PDA) in 1 patient who had only a patent LITA–right internal thoracic artery (RITA)–PDA anastomosis after the primary CABG had been performed with an in situ LITA-LAD anastomosis and a RITA-PDA anastomosis as a Y graft connected to the LITA. The Table summarizes the characteristics and operative methods for the patients.

Operative Technique

The redo sternotomy was carefully made with an oscillating saw. After the heart was dissected away from the sternum, the right atrium and aorta were exposed, starting at the diaphragmatic surface of the heart for cannulation. Adhesions in the pericardial space were divided sharply with scissors. If adhesions of the LITA graft were severe, cardiopulmonary bypass (CPB) was instituted to accomplish separation of the LITA graft from adjacent organs. The decompression with CPB and the use of a heart positioner and stabilizer (Starfish and Octopus; Medtronic, Minneapolis, MN, USA) were helpful for further dissection of target vessels and a patent LITA. The dissection of a patent LITA was sufficient to mobilize the heart without tension. After the relationship between a patent in situ LITA and target vessels was identified, arterial composite grafts were constructed by joining them together. Thus, a patent in situ LITA provided the blood inflow to the other artery. An intracoronary shunt
(ClearView; Medtronic) was sometimes used to maintain the flow of a patent LITA during construction of a composite graft. Our basic procedure for reoperation was on-pump beating-heart CABG, except in some situations. The criteria for the conversion to conventional CABG included the following: (1) the presence of a small vessel size (<1.0 mm); (2) the presence of diffuse coronary calcifications; and (3) difficulty in identifying target vessels, including deep-seated coronary arteries, an intramyocardial course, or epicardial scarring. When used, our protocols for myocardial protection consisted of a combination of antegrade and retrograde cardioplegia with temporary occlusion of the LITA graft to achieve myocardial arrest, followed by intermittent maintenance of retrograde cardioplegia and a last warm shot with blood-based cardioplegic solution at a ratio of 4:1 (blood to crystalloid solution). The distal anastomosis to the coronary artery was done by continuous suturing with single 8-0 polypropylene suture using a parachute technique. Weaning from bypass followed the usual pattern. Before decannulation was completed, graft flow tracing data were obtained intraoperatively with a transit-time flowmeter (VeriQ system; MediStim, Oslo, Norway) during the hemodynamic-stabilization period to demonstrate that the distal LITA and new grafts were patent.

Operative Data

We performed conventional CABG in 8 patients and on-pump beating-heart CABG in 2 patients. The grafts included 8 RITAs, 6 right gastroepiploic arteries, 3 radial arteries, and 1 saphenous vein. The arterial grafts for the composite grafts included 7 RITAs and 3 radial arteries. The types of composite grafts included the following: Y graft, 7 (70%); K graft, 1 (10%); X graft, 1 (10%); and double-Y graft, 1 (10%); see Figures 1-4. Overall, we made 28 distal anastomoses (mean number per patient, 2.8 ± 0.7; range, 2–4), of which 18 anastomoses were supplied from patent in situ LITAs (mean number per patient, 1.8 ± 0.4; range, 1–4). The mean durations of aortic cross-clamping (n = 8) and CPB (n = 10) were 83 minutes (range, 71–95 minutes) and 113 minutes (range, 63–138 minutes), respectively.

Data were processed and analyzed with the SPSS statistical program, version 12.0 (SPSS, Chicago, IL, USA). Continuous variables are expressed as the mean ± SD.
POOR PATENCY RATES AND HAVE FAILED TO IMPROVE LONG-TERM (1.5-41.7 MONTHS).

RESULTS

ALL 10 PATIENTS WERE DISCHARGED FROM THE HOSPITAL IN EXCELLENT CONDITION. THERE WERE NO PERIOPERATIVE MYOCARDIAL INFARCTIONS, STROKES, OR MAJOR WOUND PROBLEMS. THE PERIOPERATIVE COMPLICATIONS INCLUDED AN INJURY TO A PATENT LITA DURING INTRAPERICARDIAL DISSECTION IN 1 PATIENT (A RESECTION OF THE INJURED PORTION WAS PERFORMED AS A BEVELED SHAPE, AND A DIRECT ANASTOMOSIS WAS MADE IN AN END-TO-END CONFIGURATION), LOW CARDIAC OUTPUT Owing TO HYPOPERFUSION IN 1 PATIENT, DELIRIUM REQUIRING MEDICATION IN 1 PATIENT, AND POSTOPERATIVE BLEEDING REQUIRING SURGICAL REVISION IN 1 PATIENT. THE MEAN FOLLOW-UP DURATION WAS 23.6 ± 16.8 MONTHS (RANGE, 2-46 MONTHS). DURING THE FOLLOW-UP THERE WAS 1 LATE DEATH AND 7 NO PATIENTS WITH RECURRENT ANGINA. A CORONARY ANGIOGRAPHY OR CORONARY COMPUTED TOMOGRAPHY EXAMINATION PERFORMED IN 7 PATIENTS SHOWED THAT ALL OF THE ANASTOMOSES IN THESE PATIENTS WERE PATIENT (FIGURE 5). TWO OF THE PATIENTS HAD THEIR EXAMINATIONS PERFORMED IN THE HOSPITAL. THE OTHER 5 PATIENTS HAD THEIR IMAGING EXAMINATION PERFORMED IN THE OUTPATIENT DEPARTMENT, AND THE MEAN TIME BETWEEN THE OPERATION AND IMAGING STUDY IN THESE PATIENTS WAS 16.2 ± 16.5 MONTHS (RANGE, 1.5-41.7 MONTHS).

DISCUSSION

A POSSIBLE WEAK POINT OF COMPOSITE AND SEQUENTIAL GRAFTING IS THAT THE FLOW IS DEPENDENT ON A SINGLE IN SITU LITA;
however, the preoperative angiogram has already demonstrated its integrity, thus suggesting that the LITA has already successfully passed all hurdles of graft failure and has in some way become biologically privileged, thus ensuring its long-term patency. In our patients, occlusion of the LITA was not observed during the follow-up period, and these results are compatible with our hypothesis.

Another possible weak point of our technique is the possibility of hypoperfusion, which results from a relative decrease in flow to the LAD, because the LAD flow can be diverted to the distal circumflex or right coronary arteries. Moreover, hypoperfusion may be accelerated if competitive flow develops after surgery. On the other hand, the old LITA graft may increase in size because of increased runoff. In our cases, we experienced low cardiac output owing to hypoperfusion in 1 patient, for whom 4 distal anastomoses were performed (2 obtuse marginal branches, 1 posterolateral branch, and 1 PDA) with a composite and sequential grafting technique in which a free RITA was connected to a patent in situ LITA (Figure 1B). One vein graft was added to the RCA territory on the second postoperative day, and the patient became stable. This case suggests that too many distal anastomoses from the patent LITA as an inflow or a bypass to the RCA territory from the patent LITA can be hazardous. In such cases, individual grafting to the RCA territory should be considered.

Although the presence of a patent LITA graft to the LAD decreases the morbidity and mortality of a redo-CABG [Lytle 1994; Velebit 1994; Christenson 1995], it also creates specific technical challenges at the time of redo-CABG. These challenges include myocardial protection and avoidance of injury to the LITA graft. In conventional CABG, cardiac arrest with a combination of antegrade and retrograde cardioplegia along with temporary occlusion of the LITA graft provides adequate myocardial protection in most cases. In on-pump beating-heart CABG, we usually use intracoronary shunts to minimize coronary ischemia during the construction of composite grafts and maintain the flow of the LITA during distal anastomoses. Dissection and control of the LITA graft can be challenging and hazardous, however, and some investigators have reported injury to the LITA graft in 5% to 40% of redo-CABG, with related poor outcomes [Ivert 1988; Verkkala 1990; Elami 1994; Gillinov 1999]. When a patient with a patent LITA-to-LAD graft requires a redo-CABG through a median sternotomy, a carefully planned stepwise approach is essential. Evaluation with the aid of coronary catheterization and computed tomography is helpful to identify the relationship between the LITA graft and adjacent organs. If the LITA graft is adherent to the posterior sternal table or crosses the midline, we favor exposure of a femoral artery and vein to facilitate urgent institution of CPB in the event that injury to the LITA graft occurs. In our cases, we experienced injury to a patent LITA in 1 patient, who underwent resection of the injured portion as a beveled shape and a direct anastomosis in an end-to-end configuration.

In conclusion, composite and sequential grafting with new arterial grafts and a patent LITA is a safe and effective alternative in patients with multivessel disease undergoing redo-CABG; however, too many distal anastomoses from a patent LITA as an inflow or a bypass to the RCA territory from a patent LITA can be hazardous. In these cases, individual grafting to the RCA territory should be considered.

Study Limitations

The limitations of this clinical study are that the number of patients included in the study was small and that the length of clinical follow-up was only 23.6 months. Furthermore, this study was retrospective and observational in nature and was not randomized. Because there was no control group, we cannot conclude that the composite arterial and sequential grafting technique with a previously performed patent LITA graft is fully safe and effective in redo-CABG.

REFERENCES

bypass grafting can be performed on the beating heart. Ann Thorac Surg 72:793-7.

