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Abstract

Background: Blood transfusion is an indispensable sup-
portive therapy. It plays a pivotal role in the perioperative
management of cardiac surgery. The aim of this study was
to develop a model for predicting the transfusion volume in
isolated mitral valve surgery. Methods: We gathered data
from 677 patients undergoing isolated mitral valve surgery
with and without simultaneous tricuspid valve operation.
The dataset was partitioned into a training dataset (70%)
and a testing dataset (30%). We evaluated 18 machine-
learning algorithms, incorporating inputs from 36 demo-
graphic and perioperative features. Additionally, the per-
formance of multiple linear regressions was compared with
machine-learning algorithms. CatBoost was selected for
further analysis, and Shapley additive explanation (SHAP)
values were employed to evaluate feature importance. Fi-
nally, we explored the impact of various features on the
accuracy of CatBoost by analyzing the reasons for mis-
judgment. Results: CatBoost outperformed all 18 machine
learning algorithmswith an R-squared value of 0.420, mean
absolute error of 0.702, mean squared error of 1.208, and
root mean squared error of 1.090, surpassing multiple lin-
ear regression. The analysis of the testing group achieved
72.5% accuracy. SHAP identified 20 pertinent features in-
fluencing transfusion volume. No significant differences
were observed between correctly and incorrectly predicted
groups in tricuspid valve repair, American Society of Anes-
thesiologists classification, or platelet count. Conclusion:
CatBoost effectively predicts the intraoperative transfusion
volume in mitral valve surgery, aiding clinicians in transfu-
sion decision-making and enhancing patient care.
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Introduction

Cardiac surgery is inherently associated with a high
risk of intraoperative blood loss due to its invasive na-
ture and the use of cardiopulmonary bypass. Evidence
shows that perioperative anemia-induced tissue hypoxia in
patients undergoing cardiac surgery increases the risk of
mortality and postoperative complications [1,2]. Red blood
cell (RBC) transfusion is generally considered to enhance
oxygen delivery; thus, treating anemia is the main ratio-
nale for RBC transfusion in these patients [3]. Therefore,
RBC transfusion is an indispensable supportive treatment
for cardiac surgery, with intraoperative RBC transfusion
rates varying from 9% to 100% across 16 countries [4].
However, studies confirm that RBC transfusion during car-
diac surgery is associated with an increased risk of mor-
tality and severe morbidity, such as renal failure, pneumo-
nia, heart failure, prolonged mechanical ventilation, and
extended stay in the intensive care unit [5–7]. Therefore,
determining the optimal RBC transfusion strategy for pa-
tients undergoing cardiac surgery is crucial. This strategy
involves the right indication, the appropriate quantity of
RBC transfusion, and the correct timing. Although com-
prehensive RBC transfusion practice guidelines exist glob-
ally, in mitral valve surgery, surgeons often rely on their
past experience to estimate a patient’s anticipated blood
consumption. Unfortunately, due to time constraints, doc-
tors often base their predictions on a few indicators during
surgery, which may result in unreliable estimates. Further-
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more, some doctors tend to overestimate blood consump-
tion to avoid liability, leading to unnecessary wastage. RBC
transfusion remains one of the five most overused proce-
dures in hospitals [8].

Cardiac surgery requires intraoperative extracorporeal
circulation and often involves lengthy procedures, which
increases the risk of intraoperative bleeding. It is charac-
terized by an urgent onset, difficult operation, long oper-
ating times, large blood transfusion volumes, various com-
plications, and high mortality [5,9,10]. The conventional
methods for predicting intraoperative blood transfusions
rely on formulas or personal experience. However, these
approaches are limited due to the relatively few character-
istic variables considered, their low prediction accuracy, the
complexity of their operations, and their dependency on
experience. Thus, these methods often fall short of clini-
cal needs. Machine learning models have demonstrated the
ability to predict individual outcomes by integrating diverse
patient characteristics and have been successfully applied
across various healthcare domains [11–13]. Although pre-
vious machine learning algorithms could reliably predict
the need for transfusions, predicting the specific amount
of RBC units to be transfused remains more challenging
[14]. Given the substantial volume of blood involved and
the numerous factors affecting blood transfusion in cardiac
surgery, only a limited number of studies have employed
models to address this issue effectively.

In our previous research, we utilized machine learning
models to predict the need for RBC transfusion during mi-
tral valve surgery [15], but we did not predict the number
of RBC units required for transfusion. The primary goal of
this study was to enhance the optimization of the model to
precisely predict the required number of RBC units for in-
dividual patients during mitral valve surgery. A secondary
goal was to provide surgeons with secure and personalized
transfusion recommendations, thereby improving the clini-
cal care of patients.

Methods

Study Population

We gathered clinical case information for a series of
patients undergoing isolated mitral valve surgery, with and
without simultaneous tricuspid valve operation, at the De-
partment of Cardiology of Zhongshan Hospital of Fudan
University from January to December 2019. The surgeries
encompassed both conventional andminimally invasive ap-
proaches. Patients who underwent the maze operation, aor-
tic valve surgery, and atrial septal repair, as well as those
with a history of heart surgeries (except interventional ther-
apy), were excluded.

The study adhered to the principles of the Declaration
of Helsinki (revised in 2013). The approval for data uti-

lization in research was granted by the Zhongshan Hospital
Institutional Review Board (IRB) (NO.: B2020-218), with
patient consent waived.

Database

The data were gathered based on literature and physi-
cian expert reviews. This included patient demographics,
preoperative laboratory results, intraoperative and postop-
erative transfusion data, intraoperative surgical and anes-
thetic management data, postoperative management data
and laboratory results, the occurrence of prespecified in-
traoperative and postoperative complications, and the du-
ration of both intensive care unit and hospital stay in cal-
endar days. A sepsis-related postoperative complication
was defined as the presence of positive pathogens in two
blood cultures. Preoperative patients were classified based
on anemia severity into mild (hemoglobin >90 g/L but
lower than normal), moderate (hemoglobin = 60–89 g/L),
severe (hemoglobin = 30–59 g/L), and extremely severe
anemia (hemoglobin <30 g/L) [16]. Acute kidney injury
was defined as an increase in serum creatinine level by≥0.3
mg/dL (≥26.5 µmol/L) within 48 h of surgery [17]. The
continuous variable international normalized ratio (INR)
was converted into a categorical variable (<2,≥2) to facili-
tate better clinical interpretation and application. The sever-
ity of intraoperative valve stenosis or insufficiency was as-
sessed using cardiac ultrasonography.

The data were obtained through extraction from the
electronic medical record system and manual collection.
After data extraction, preliminary processing of the data
was carried out by statisticians and clinicians based on lit-
erature and reviews. This involved data cleaning, miss-
ing value interpolation, and data type conversion. Miss-
ing values were handled differently for measurement and
count data. For measurement data, the missing values
were replaced with the average value, whereas for count
data, the missing values were substituted with the most fre-
quently occurring values. After interpolating, body mass
index (BMI) and other calculable variables were recalcu-
lated. However, the missing values for outcome variables
were not subjected to interpolation.

Dependent and Independent Variables

The principal objective of this study was to predict the
required number of RBCs for an individual during surgery.
Intraoperative RBC transfusion refers to the number of allo-
geneic RBCs injected during surgery, excluding autologous
and postoperative blood transfusions [18].

To construct a predictive model, we selected indepen-
dent variables by considering the baseline characteristics of
patients, encompassing both preoperative and intraopera-
tive variables with the potential to be associated with blood
transfusion (Table 1). The numbers of intraoperative RBCs
transfused were designated as the dependent variable.
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Table 1. Information on variables.
Variable name Mean ± SD Variable name Mean ± SD

Age (year) 55.95 ± 13.34 Aspartate transaminase (U/L) 21.23 ± 12.39
Body weight (kg) 64.70 ± 12.69 Alanine transaminase (U/L) 21.43 ± 17.11
Height (cm) 164.67 ± 8.95 RBC (1012/L) 4.33 ± 0.65
BMI (kg/m2) 23.75 ± 3.50 Platelet (109/L) 192.10 ± 62.11
INR 1.70 ± 6.01 Hematocrit (%) 39.36 ± 5.08
Prothrombin time (s) 12.83 ± 7.50 hemoglobin (g/L) 131.16 ± 18.23
Creatinine (µmol/L) 83.20 ± 51.13 EF (%) 63.72 ± 6.82

Variable name n (%) Variable name n (%)

Gender
Male 351 (51.85)

Mitral valve replacement
No 489 (72.23)

Female 326 (48.15) Yes 188 (27.77)

Hypertension
No 441 (65.14)

Mitral valve repair
No 249 (36.78)

Yes 236 (34.86) Yes 428 (63.22)

Diabetes
No 625 (92.32)

Tricuspid valve repair
No 477 (70.46)

Yes 52 (7.68) Yes 200 (29.54)

Oral anticoagulants
No 597 (88.18)

Autologous blood transfusion
No 137 (20.24)

Yes 80 (11.82) Yes 540 (79.76)

NYHA

1 8 (1.18)

Tricuspid regurgitation

No 461 (68.09)
2 250 (36.93) Mild 99 (14.62)
3 51 (7.53) Moderate 86 (12.70)
4 368 (54.36) Severe 31 (4.58)

Pulmonary arterial hypertension
No 289 (42.69)

Preoperative anemia
No 589 (87.00)

Yes 388 (57.31) Mild 78 (11.52)

Atrial fibrillation
No 546 (80.65) Moderate 10 (1.48)
Yes 131 (19.35)

ASA

1 1 (0.15)

Infective endocarditis
No 636 (93.94) 2 26 (3.84)
Yes 41 (6.06) 3 601 (88.77)

INR
<2 637 (94.09) 4 49 (7.24)
≥2 40 (5.91)

Preoperative cerebral infarction
No 653 (96.45)

Surgeon_id

Doc_1 78 (11.52) Yes 24 (3.55)
Doc_2 38 (5.61)

Mitral stenosis

No 517 (76.37)
Doc_3 34 (5.02) Mild 28 (4.14)
Doc_4 56 (8.27) Moderate 70 (10.34)
Doc_5 44 (6.50) Severe 62 (9.16)
Doc_6 44 (6.50)

Mitral regurgitation

No 51 (7.53)
Doc_7 26 (3.84) Mild 47 (6.94)
Doc_8 64 (9.45) Moderate 264 (39.00)
Doc_9 20 (2.95) Severe 315 (46.53)
Doc_10 98 (14.48)

Surgical method
Minimally invasive 216 (31.91)

Doc_11 32 (4.73) Routine 461 (68.09)
Doc_12 21 (3.10)

Acute coronary syndrome
No 651 (96.16)

Doc_13 38 (5.61) Yes 26 (3.84)
Doc_14 20 (2.95)
Doc_15 31 (4.58)
Doc_16 33 (4.87)

Abbreviations: EF, ejection fractions; INR, international normalized ratio; NYHA, New York Heart Association; ASA, American
Society of Anesthesiologists; BMI, body mass index; RBC, red blood cell.

Model Selection and Training

The database was randomly split into a training dataset
(70%) and a test dataset (30%), and 18 machine learning
algorithms, including CatBoost, were employed for calcu-
lation. Tenfold cross-validation was implemented in the
training dataset. These machine learning algorithms were

frequently employed to predict continuous variables. Each
algorithm had unique characteristics and exhibited varying
performance based on distinct prediction scenarios. This
study chose the most effective algorithms for detailed anal-
ysis through a comparative evaluation of model perfor-
mance. We calculated the mean absolute error (MAE), the
mean squared error (MSE), the root MSE (RMSE), and
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Table 2-1. Performance results of each machine-learning models.
NO. Model MAE MSE RMSE R2 RMSLE

1 CatBoost Regressor 0.702 1.208 1.090 0.420 0.463
2 Random Forest 0.697 1.217 1.080 0.364 0.495
3 Extra Trees Regressor 0.685 1.244 1.095 0.344 0.482
4 Light Gradient Boosting Machine 0.718 1.206 1.087 0.338 0.487
5 Extra Trees Classifier 0.739 1.271 1.107 0.324 0.505
6 Extreme Gradient Boosting 0.725 1.269 1.109 0.317 0.494
7 Orthogonal Matching Pursuit 0.863 1.454 1.181 0.248 0.547
8 Lasso Regression 0.917 1.563 1.221 0.194 0.560
9 Elastic Net 0.922 1.551 1.218 0.191 0.566
10 Ridge Regression 0.875 1.538 1.213 0.179 0.562
11 Bayesian Ridge 0.922 1.571 1.227 0.176 0.569
12 Linear Regression 0.879 1.555 1.220 0.166 0.564
13 Adaboost Regressor 1.069 1.581 1.241 0.153 0.657
14 K Neighbors Regressor 0.763 1.749 1.271 0.152 0.542
15 Huber Regressor 0.871 1.755 1.280 0.141 0.533
16 Lasso Least Angle Regression 1.093 2.119 1.409 –0.033 0.629
17 Support Vector Machine 0.745 2.357 1.480 –0.130 0.588
18 Decision Tree 0.807 2.313 1.512 –0.297 0.643
MAE, mean absolute error; MSE, mean squared error; RMSE, root MSE; RMSLE, root mean
squared logarithmic error.

Table 2-2. Performance results of multiple linear regression
model.

MLR MAE MSE RMSE R2 RMSLE

Backward elimination 0.886 1.179 1.086 0.318 0.240
Forward selection 0.886 1.179 1.086 0.318 0.240
Stepwise regression 0.877 1.167 1.080 0.332 0.239
MLR, multiple linear regression.

the root mean squared logarithmic error (RMSLE) between
the predicted and actual values of RBC transfusion units
as the primary metrics of accuracy to compare the perfor-
mance of these models. The MAE represents the average
absolute difference between the actual and predicted val-
ues in the dataset, whereas the MSE represents the average
squared difference between the original and predicted val-
ues in the dataset. The RMSE is the square root of MSE.
RMLSE is computed by taking the logarithm of both the
actual and predicted values, followed by determining the
differences between them. RMSLE is robust against out-
liers, as it treats small and large errors with equal impor-
tance. Smaller values of MAE, MSE, RMSE, and RMSLE
indicate better model performance. Additionally, we cal-
culated the R-squared (R2) metrics to further analyze the
accuracy of these models. The closer the R2 to 1, the better
the performance of the model.

Besides, multiple linear regressions (MLRs) were ex-
ecuted on the database, employing three stepwise-type pro-
cedures: forward selection, backward elimination, and
stepwise regression. The performance of MLR was then
compared with that of the machine learning algorithms.

Feature Ranking

The optimal model, identified through compari-
son, was further analyzed using Shapley additive ex-
planation (SHAP) values to evaluate feature importance
(https://github.com/slundberg/shap) [19]. Following model
training, a partial dependency graph (PDP or PD graph) was
used to calculate the SHAP value for each feature. The
SHAP value served as a metric to measure the contribution
rate of each feature within the model, whether positively or
negatively. By leveraging these calculations, a matrix of
SHAP values was generated, providing a visualization of
each feature’s contribution to the model predictions. This
analysis helped us explain the role of each feature in the
model.

Statistical Analysis

IBM SPSS Statistics for Windows, version 25.0 (IBM
Corp., Armonk, NY, USA) and Python 3.6 (https://www.py
thon.org/, Python Software Foundation, Wilmington, DE,
USA) were used in this study, with the Python packages
Scikit-learn, SHAP (feature analysis), and matplotlib (vi-
sualization). Continuous variables were summarized using
the mean and standard deviation, whereas categorical vari-
ables were presented as proportions. A one-way analysis of
variance was employed to compare the means across differ-
ent groups. The chi-square test was used to identify any sig-
nificant associations between variables and assess the distri-
bution of each feature between the accurate prediction and
misjudgment groups.
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Fig. 1. Plot showing the relative importance of different variables for predicting how many units of RBC an individual patient
will require during mitral valve surgery as derived from the CatBoost Regressor model. (A) The histogram shows the importance
of different variables in predicting the amounts of intraoperative RBC transfusion units, sorted by importance from high to low. (B)
Blue and green colors represent high and low levels of each predictor. The x-axis represents the SHAP value. A positive SHAP value
implies likelihood of increase in use of intraoperative RBC transfusion units; a negative value means unlikelihood of increase in use of
intraoperative RBC transfusion units. RBC, red blood cell; SHAP, shapley additive explanation.

Results

RBC Transfusion

A total of 677 patients were included in the final
dataset. Table 1 provides an overview of the demographic
and perioperative data. The average age of the patients was
55.95 ± 13.34 years, and 48.15% of patients were female.
The mean preoperative hematocrit was 39.36% ± 5.08%.
Among these patients, 166 (24.52%) received intraoper-
ative RBC transfusion, with transfusion amounts ranging
from 2 and 10 units. Patients who did not receive blood
transfusions were recorded as having 0 units. The average
RBC transfusion was 0.71 ± 1.43 units.

The Best Model for Predicting the Intraoperative RBC
Transfusion Units and Feature Importance

The training dataset was used to optimize the hy-
perparameters for each model. Table 2-1 and Table 2-2
present the performance results of each machine learning
model and MLR. Among the models evaluated, the Cat-
Boost model best predicted intraoperative transfusion re-
quirements. Specifically, the CatBoost model achieved an

R2 value of 0.420, with MAE of 0.702, MSE of 1.208,
RMSE of 1.090, and RMSLE of 0.463 in regression analy-
sis.

The variables significantly influencing the amount of
intraoperative RBC transfusion units included preoperative
hematocrit, age, surgeon ID, bodyweight, height, BMI, sur-
gical method, anemia, preoperative hemoglobin, and pre-
operative RBC counts, among others (Fig. 1). Further, the
analysis also revealed the relative contribution of each vari-
able in predicting the amount of intraoperative RBC trans-
fusion units. Notably, preoperative hematocrit emerged as
the most crucial feature for predicting the amounts of intra-
operative RBCs transfused (Fig. 1). The impact of the main
factors on the outcome variables is illustrated in Fig. 2A,
whereas Fig. 2B illustrates the correlation between different
surgeons and the quantities of intraoperative RBC transfu-
sion.

Further analysis using the CatBoost model revealed
that hematocrit (<37.88%), age (>64 years), body weight
(<60.25 kg), BMI (<21.79 kg/m2), hemoglobin (<122.28
g/L), surgical method (median thoracotomy surgery),
height (<161.28 cm), preoperative RBC counts (<3.87 ×
1012/L), and sex (female) were the main factors influencing
the likelihood of increasing RBC transfusion units (Fig. 3).
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Fig. 2. Main effects of each risk factor and outcome variable. (A) Effects of main risk factors on outcome variable. Surgical method
includes Minimally Invasive (1) or Routine (2). Anemia includes No (0), Mild (1), or Moderate (2). Tricuspid regurgitation includes No
(0), Mild (1), Moderate (2), or Severe (3). (B) SHAP value for the surgeon. When it was greater than 0, the surgeon was more likely to
advise an increase in use of intraoperative RBC transfusion units.

Analysis of Reasons for Misjudgment

Of the 204 patients examined, 148 were accurately
predicted (72.5%) and classified into the accurate predic-
tion group. Ten were classified into the larger group,
where the predicted value of RBC units exceeded the ac-
tual amount by more than 1 unit, whereas 46 patients were
classified into the smaller group, where the predicted value
of RBC units was more than 1 unit lower than what the pa-
tients actually received (Table 3).

The distribution of three features [tricuspid valve re-
pair, American Society of Anesthesiologists (ASA) classifi-
cation, and platelets] was not significantly different among

groups. However, the distribution of other features, includ-
ing demographics and laboratory results, exhibited signifi-
cant differences among the three groups (Table 3).

Discussion

The CatBoost algorithm better predicted the intraoper-
ative RBC transfusion units by incorporating 36 character-
istics associated with patients undergoing cardiac surgery.
Unlike traditional approaches where doctors rely on their
experience to select a limited number of indicators for pre-
diction, our algorithm incorporated 36 demographic and pe-
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Fig. 3. The boundary values of main factors influencing the likelihood of increase in use of RBC transfusion units. Within the
boundary values, the clinicians were more likely to advise an increase in use of intraoperative RBC transfusion units.

rioperative features. Our algorithm significantly enhanced
the accuracy of predicting blood volume in cardiac surgery
by analyzing the importance of various factors using SHAP
values. The model provided safe and individualized data-
driven recommendations for a patient’s intraoperative RBC
transfusion volume, achieving an accuracy rate of up to
72.5%.

Some studies have developed blood volume prediction
formulas to enhance the accuracy of predicting blood vol-
ume [20]. These formulas typically employ multiple lin-
ear regression methods to predict surgical blood volume.
However, as presented in Table 2-2, traditional machine
learning algorithms such as decision trees, random forests,
and the CatBoost outperformed linear regression algorithms
in terms of evaluation indicators. This superiority could
be attributed to the linear constraints of prediction formu-
las, limiting their ability to capture nonlinear relationships
among features. In contrast, the machine learning algo-
rithms can account for these nonlinear relationships, lead-
ing to higher prediction accuracy. As demonstrated in Ta-
ble 2-1, decision trees and random forests achieve high ac-
curacy in predicting surgical blood volume. However, al-
though these machine learning algorithms excel in various
domains, they may lack specialization in predicting surgi-

cal blood volume. Therefore, the scope still exists for fur-
ther improvement in the prediction accuracy of learning al-
gorithms within the specific domain of surgical blood vol-
ume prediction. The CatBoost algorithm employed in this
study was optimized for predicting blood volume in car-
diac surgery. CatBoost demonstrated superior performance
compared with traditional machine learning algorithms by
considering 36 characteristics specific to patients undergo-
ing cardiac surgery. Its focus on the nuances of cardiac
surgery enhanced its relevance and accuracy in predicting
blood volume during these procedures.

CatBoost addressed the overfitting issue and enhanced
the model’s generalization capability and robustness, mak-
ing it suitable for scenarios involving small sample sizes
and unbalanced data. CatBoost reduced bias and improved
the generalization ability of the model using order boosting
instead of traditional gradient estimationmethods. The Cat-
Boost feature ranking indicated that variables such as hema-
tocrit, age, surgeon ID, body weight, height, BMI, type of
surgery, anemia, hemoglobin, and preoperative RBC counts
were the primary factors affecting the amount of intraoper-
ative RBC transfusion units, as illustrated in Fig. 1, which
was consistent with previous findings [21]. Clinicians can
use this feature ranking to adjust potentially modifiable fac-
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Table 3. Analyzing the reasons for misjudgment through the distribution of main factors among groups.

Missing
Overall Larger Smaller Accurate

p
n = 204 n = 10 n = 46 n = 148

Gender, n (%) 0 <0.001*
Male 112 (54.9) 2 (20.0) 13 (28.3) 97 (65.5)
Female 92 (45.1) 8 (80.0) 33 (71.7) 51 (34.5)

Age, mean (SD) 0 54.9 (13.8) 59.2 (11.8) 63.5 (12.7) 51.9 (13.1) <0.001*
Weight, mean (SD) 0 64.9 (13.0) 56.7 (8.4) 54.9 (9.0) 68.6 (12.4) <0.001*
Height, mean (SD) 0 164.6 (9.1) 156.9 (6.5) 158.8 (7.4) 166.8 (8.7) <0.001*
BMI, mean (SD) 0 23.8 (3.5) 23.0 (2.6) 21.7 (3.1) 24.5 (3.4) <0.001*
Preoperative RBC, mean (SD) 0 4.4 (0.7) 3.7 (0.4) 4.0 (0.6) 4.5 (0.6) <0.001*
Preoperative Hematocrit, mean (SD) 0 39.9 (4.8) 34.3 (3.4) 36.3 (5.4) 41.4 (3.7) <0.001*
Preoperative Hemoglobin, mean (SD) 0 132.5 (17.8) 111.5 (12.9) 119.2 (20.1) 138.1 (13.6) <0.001*
Surgical method, n (%) 0 0.001

Minimally invasive 73 (35.8) 2 (20.0) 6 (13.0) 65 (43.9)
Routine 131 (64.2) 8 (80.0) 40 (87.0) 83 (56.1)

Heparin, mean (SD) 0 191.6 (44.9) 167.4 (23.8) 169.6 (43.8) 200.1 (43.5) <0.001*
Intraoperative blood transfusion, mean (SD) 0 0.7 (1.4) 0.0 (0.0) 3.0 (1.5) 0.0 (0.0) <0.001*
Intraoperative plasma transfusion, mean (SD) 0 108.8 (209.4) 40.0 (126.5) 473.9 (135.7) 0.0 (0.0) <0.001*
Postoperative hemoglobin, mean (SD) 0 110.9 (14.3) 96.8 (9.8) 104.0 (13.3) 114.0 (13.5) <0.001*
Postoperative RBC, mean (SD) 0 3.7 (0.5) 3.2 (0.3) 3.5 (0.4) 3.8 (0.5) <0.001*
Postoperative Hematocrit, mean (SD) 0 32.9 (4.9) 29.6 (3.1) 30.4 (5.3) 33.9 (4.6) <0.001*
Postoperative length of stay, mean (SD) 0 7.4 (4.1) 7.2 (1.2) 9.5 (7.2) 6.8 (2.4) <0.001*
Atrial fibrillation, n (%) 0 <0.001*

No 170 (83.3) 8 (80.0) 29 (63.0) 133 (89.9)
Yes 34 (16.7) 2 (20.0) 17 (37.0) 15 (10.1)

ASA, n (%) 0 0.14
2 13 (6.4) 0 0 13 (8.8)
3 172 (84.3) 10 (100.0) 37 (80.4) 125 (84.5)
4 19 (9.3) 0 9 (19.6) 10 (6.8)

Surgeon_id 0 0.002
Doc_1 12 (5.9) 0 2 (4.3) 10 (6.8)
Doc_2 9 (4.4) 0 3 (6.5) 6 (4.1)
Doc_3 18 (8.8) 1 (10.0) 2 (4.3) 15 (10.1)
Doc_4 15 (7.4) 1 (10.0) 4 (8.7) 10 (6.8)
Doc_5 18 (8.8) 0 5 (10.9) 13 (8.8)
Doc_6 6 (2.9) 0 1 (2.2) 5 (3.4)
Doc_7 22 (10.8) 0 1 (2.2) 21 (14.2)
Doc_8 5 (2.5) 1 (10.0) 0 4 (2.7)
Doc_9 29 (14.2) 3 (30) 17 (37) 9 (6.1)
Doc_10 5 (2.5) 1 (10.0) 2 (4.3) 2 (1.4)
Doc_11 9 (4.4) 0 2 (4.3) 7 (4.7)
Doc_12 5 (2.5) 0 2 (4.3) 3 (2.0)
Doc_13 7 (3.4) 0 0 7 (4.7)
Doc_14 11 (5.4) 2 (20.0) 1 (2.2) 8 (5.4)
Doc_15 9 (4.4) 0 0 9 (6.1)

Tricuspid valve repair 0 0.002
No 153 (75.0) 4 (40.0) 29 (63.0) 120 (81.1)
Yes 51 (25.0) 6 (60.0) 17 (37.0) 9 (6.1)

Preoperative anemia, n (%) 0 <0.001*
No 181 (88.7) 3 (30.0) 32 (69.6) 146 (98.6)
Mild 22 (10.8) 7 (70.0) 13 (28.3) 2 (1.4)
Moderate 1 (0.5) 1 (2.2)

* p < 0.001.
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tors when drawing conclusions from feature ranking, aim-
ing to minimize unnecessary transfusions. In addition, the
model offered precise boundary values for each factor to en-
hance the accuracy of predicting intraoperative RBC trans-
fusion units (Fig. 3). Unlike traditional methods that rely on
clinician experience to estimate RBC transfusion require-
ments, this new model could provide novel guidance in re-
ducing unnecessary blood wastage during cardiac surgery.

We conducted an analysis to understand why misjudg-
ments occurred, and found that certain factors exhibited
statistically significant differences between the misjudg-
ment and accurate prediction groups (Table 3). For ex-
ample, patients without anemia were more likely to have
their RBC transfusion values accurately predicted com-
pared with those with mild or moderate anemia. Addition-
ally, the misjudgment ratio was higher in female patients.
This was potentially attributed to physical blood loss, as
many women experience varying degrees of anemia [22].
Although factors such as tricuspid valve repair, ASA clas-
sification, and platelet count are known to influence the
amount of intraoperative RBC transfusion units, our find-
ings (Table 3 and Fig. 1) suggested that these factors did
not significantly affect the misjudgment ratio of the model.
This analysis provided valuable insights for further optimiz-
ing the model by comparing the distribution of each feature
between the accurate prediction and misjudgment groups
and analyzing the reasons for misjudgment. This model
was based on retrospective registry data. The accuracy of
future iterations of the model can be improved using higher-
fidelity data obtained through ongoing prospective data col-
lection. Additionally, conducting a randomized controlled
trial associated with this study can provide valuable valida-
tion. We strengthened the reliability of our results by in-
corporating multicenter data and performing robust cross-
validation. Moving forward, we plan to integrate prospec-
tive studies into our research to enhance the efficiency and
accuracy of the algorithm.

Themachine learning process for completing tasks op-
erates like a black box, lacking interpretability and not be-
ing as intuitive and clear as traditional linear models. Pre-
vious studies showed that machine learning models were
highly specialized and were only applicable in specific con-
texts. Therefore, this model applies to only patients un-
dergoing isolated mitral valve surgery with or without con-
comitant tricuspid valve surgery. Developing a universal
model without compromising prediction accuracy remains
a key challenge for future research.

Conclusion

In conclusion, we employed amachine learningmodel
to predict the required number of RBC units for individ-
ual patients undergoing mitral valve surgery. This model
had the potential to provide clinicians with safe transfusion

recommendations, aiding in the decision-making process to
make preoperative orders for RBCs, enhancing patient care,
and reducing unnecessary wastage of overordered RBCs.
Our predictive calculator for blood product transfusion is
novel. Our team is actively working on integrating this pro-
totype calculator into future clinical workflows.
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