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A B S T R AC T

Neurologic injuries, whether subtle or overt, are a major
source of morbidity secondary to coronary artery bypass graft
(CABG) surgery. A comprehensive review of research in the
area of neurologic injury is provided. We conclude this article
by providing insight regarding areas requiring further investi-
gation in order to reduce sustainably the risk of these iatro-
genic events among patient undergoing CABG surgery. 

I N T R O D U C T I O N

Neurologic injury is a major source of morbidity and mor-
tality following coronary artery bypass graft (CABG) surgery.
Patients may have deficits ranging from subclinical cogni-
tive changes to death and from transient events to longstand-
ing disability. The aim of this paper is to provide the reader
with a comprehensive review of issues associated with the
following areas: epidemiology of neurologic injury, neuropsy-
chological and neurobehavioral outcomes, strokes, neu-
roimaging modalities, use of biomarkers to measure tissue-
level injury, identification of intraoperative care and manage-
ment opportunities to reduce the risk of injury, and the use
off-pump CABG.

E P I D E M I O LO GY  O F  N E U R O LO G I C  
INJURY ASSOCIATED WITH CABG SURGERY

CABG surgery is an operation used to revascularize
atherosclerotic coronary arteries in patients suffering from
ischemic heart disease. Renee Favaloro, who along with oth-
ers pioneered the technique using saphenous vein grafts, first
reported CABG surgery as a viable treatment option in 1968
[Favaloro 1968, Favaloro 1978]. Since then, the use of this
operation has increased, with approximately 739,000 opera-

tions performed in the United States during 1997 [Braun-
wald 1997]. This surgery, undeniably effective in reducing
anginal symptoms and, for certain patients, increasing life
expectancy, is a relatively safe procedure, with adjusted mor-
tality rates for CABG surgery approaching 2%. Although
improvements in CABG surgery, such as a nearly 50%
reduction in in-hospital mortality, have been realized in the
northern New England region via focused interventions
aimed at reducing fatal low cardiac output, rates of neuro-
logic injuries have not been impacted in kind [O’Connor
1996, Charlesworth 2003].

It has long been observed that the benefits of CABG
surgery come at the risk of adverse neurologic outcomes
[Kennedy 1980, Frye 1992] (Figure). Neurologic compli-
cations including global encephalopathy and focal neuro-
logic syndromes have long been reported following car-
diac surgery. These deficits vary widely in severity and in
permanence and may be the consequence of several fac-
tors including hypoxia, embolism, and hemodynamic or
metabolic derangements. The most commonly cited eti-
ologies are hypotension and embolization [Selnes 2001,
Likosky 2003b]. Clinically apparent stroke, although rel-
atively rare (1.3% to 4.3% depending on patient age and
other risk factors), is a potentially devastating complica-
tion of CABG surgery. This complication is associated
with increased morbidity, cost, length of stay, and mortal-
ity [Roach 1996]. Furthermore, despite sensitive detec-
tion with sophisticated neuroimaging studies or neu-
ropsychological testing, this figure is likely an underesti-
mate of the frequency of neurologic injury associated
with CABG surgery.

In the course of clinical care, only symptomatic clinical
outcomes are routinely detected. One study using mag-
netic resonance imaging (MRI) to detect new brain lesions
after CABG surgery found that upwards of 39% of
patients have clinically silent infarcts [Goto 2001]. Studies
by Newman et al suggest that patients undergoing CABG
surgery are at high risk for both short-term (50% at dis-
charge, 24% at 6 months) and long-term (42% at 5 years)
cognitive deficits, which are often called subclinical
because they have a subtle clinical presentation and thus
are not customarily detected through clinical care [New-
man 2001]. Although compelling, prior studies fall short of
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identifying intraoperative events associated with the cre-
ation of these deficits. The consequence is that little
progress has been made in understanding the mechanisms
of these prevalent but subclinical adverse neurologic out-
comes and more importantly in improving surgical care to
minimize the risk of creating them.

N E U R O P S YC H O LO G I C A L  A N D  
N E U R O B E H AV I O R A L  O U TC O M E S

Since the study by Gilman and colleagues in 1965,
numerous investigations have reported significant cogni-
tive decline after CABG, with memory, complex atten-
tion, and psychomotor skills being most commonly
affected (Table 1) [Benedict 1994, Borowicz 1996, Selnes
1999a,  Selnes 1999b,  Symes 2000,  Newman 2001,
Browndyke 2002, Dogan 2002, Keith 2002]. However,
discrepancies exist in the literature with respect to the
incidence of cognitive decline, the temporal course of
cognitive changes, and the risk factors for postsurgical
cognitive decline. The incidence of cognitive decline
within the first postoperative week has ranged approxi-
mately from 30% to 80%. Approximately a third of
patients may continue to experience cognitive problems,
such as the inability to balance a checkbook, up to
approximately a year after surgery [Benedict 1994, New-
man 2001]. The rate of continued cognitive problems
beyond the acute postoperative period has varied widely.
The cause of this variation is likely multifactorial and
includes differences in retest intervals, patient population
characteristics, and concomitant procedures as well as the
actual nature of the cardiac surgery performed. Nonethe-
less, persisting cognitive problems have been noted in at
least a subset of patients for up to 5 years [Newman 2001,
Mullges 2002, Selnes 2002].

Several potential risk factors for cognitive decline follow-
ing CABG have been identified, although firm conclusions
remain elusive [Hammon 1997, Arrowsmith 2000, Kilo 2001,
Newman 2001, Grocott 2002b, Van Dijk 2002, Mathew
2003]. Patient characteristics that may predispose to postop-
erative cognitive decline include apolipoprotein E-4 allele
positivity, concomitant illnesses such as diabetes, reduced
preoperative endotoxin immunity, preoperative cognitive
deficits, lower level of education, and older age. Surgical vari-

ables that appear to increase the risk of cognitive decline
include the use of cardiopulmonary bypass, microembolic
load during surgery, and cerebral hypoperfusion [Pugsley
1994, Newman 1995, Borowicz 1996]. Intra- and postopera-
tive hyperthermia may also pose a risk for cognitive decline.
Of note, patients undergoing CABG surgery may be prone to
postoperative cognitive decline, even without the exposure of
CABG surgery, due to the prevalence of vascular disease in
this patient population.

Furthermore, in a recent small MRI study new brain
infarcts were observed to occur 3 to 12 months after
surgery [Kohn 2002]. This finding suggests that brain
damage outside the perioperative period, possibly sec-
ondary to the inflammatory process, may contribute to the
persistence or exacerbation of cognitive deficits in some
patients. Importantly, recent evidence suggests that differ-
ent variables may be predictive of level of cognitive func-
tioning for different postoperative time frames, again
highlighting the need for standardized retest intervals
across studies [Murkin 1995, Selnes 1999a]. It is thus likely
that the etiology of cognitive outcomes following CABG is
multifactorial and includes preoperative, operative, and
postoperative variables.

In addition to cognitive changes, a number of studies have
reported high rates of depressed and anxious mood following
CABG [Vingerhoets 1996, Fraguas Junior 2000]. Other stud-
ies have reported decreased anxiety and depression [Vanninen
1998]. Evidence suggests that postoperative mood problems
are more likely to be observed in patients who were already
experiencing these problems prior to surgery [Papadantonaki
1994, McKhann 1997a, Timberlake 1997]. Furthermore,
mood symptoms have not been clearly associated with greater
cognitive impairment following CABG [Vingerhoets 1995,
McKhann 1997a].

Numerous methodological issues may underlie the myriad
discrepancies in the neuropsychological literature on CABG.
Different criteria have been used to define significant cogni-
tive decline, such as a 20% change from baseline or decline of
more than 1 SD from the baseline distribution of scores on a
given test [Kneebone 1998, Collie 2002, Keith 2002]. The
specific neuropsychological tests employed and the compre-
hensiveness of test batteries has varied considerably [Murkin
1995]. The psychometric properties of tests, such as test-
retest reliability, have been taken into account in only a
limited number of investigations. When during the postoper-
ative period patients are evaluated may also contribute to dis-
crepant findings.

Neuropsychological changes are a frequent outcome sec-
ondary to CABG surgery. Potential etiologies for this out-
come include micro- and macroembolization, hypoxia, and
hypotension. Although consensus documents have encour-
aged homogeneity in methodology and evaluation of results,
significant heterogeneity exists across published studies.
Furthermore, most studies have not examined pathophysiol-
ogy. Consequently, inferences with respect to the specific
mechanisms underlying cognitive and emotional effects of
CABG at this time should be required as hypotheses war-
ranting evaluation.
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Table 1. Summary of Neuropsychological Studies in Coronary Artery Bypass Grafting (CABG)*

Sample Follow-up
Reference Size Interval Definition of Decline Post-CABG Findings

[Savageau 1982a] 227 9 d ≥1SD decline on at least 1 index 11%-17% with decline
[Savageau 1982b] 245 6 mo ≥1 SD decline on at least 1 index 24% with decline
[Shaw 1986] 298 7 d ≥1 SD decline on at least 1 test 79% with decline
[Sotaniemi 1986] 49 2 mo, 1 and 5 y Neuropsychological index score Decline only 5 y after CABG
[Fish 1987] 96 7 d, 2 mo Group comparison Decline on 4/10 tests at 7 d, all patients back to baseline at 

2 mo
[Shaw 1987a] 298 7 d ≥1 SD decline on at least 1 test 79% with decline
[Shaw 1987b] 259 6 mo ≥1 SD decline on at least 1 test 57% with decline
[Folks 1988] 391 21 mo Cutoff of 20 on MMSE 5.6% with decline
[Smith 1988] 67 8 d, 2 mo ≥1 SD decline on at least 2 tests 73% with decline at 8 d, 37% with decline at 2 mo
[Harrison 1989] 47 8 d, 2 mo Reduced score on at least 77% with decline at 8 d, 36% with decline at 2 mo

2/10 of tests
[Klonoff 1989] 135 3 mo, 1 and 2 y Any change No evidence of decline
[Stump 1993b] 54 5-7 d 20% on at least 3 tests 76% with decline
[Newman 1994] 215 7-10 d ANOVA Significant decline on 5/6 tests
[Pugsley 1994] 100 8 d, 8 weeks ≥1 SD decline on at least 2 tests 34% with decline at 8 d, 16% with decline at 8 weeks
[Bruggemans 1995] 63 CABG, 1 wk, 1 mo, ANOVA Visual memory decline at 1 week, learning and recent 

63 control 6 mo memory decline at 1 mo, attention and psychomotor speed 
decline at all postoperative assessments, verbal fluency 
decline at 1 wk and 1 mo

[Clark 1995] 41 5-10 d Group comparison 73% with memory decline, 49% with comprehension 
decline, 46% with attention decline, 44% with construction 
decline

[Hlatky 1997] 61 5 y Group comparison No significant decline
[Mckhann 1997c] 127 1 mo, 1 year ≥0.5 SD decline on at least 1 test 26% with decline at 1 mo, improved by 1 y, 11% with decline 

at 1 month and 1 year, 24% with decline at 12 mo but not 
1 mo

[Jacobs 1998] 18 3 mo Correlation No significant decline
[Vanninen 1998] 38 3 mo ≥1 SD decline on at least 3 tests No overall decline
[Wimmer-Greinecker 1998] 76 5 d, 2 mo ANOVA No decline at 5 d, improved visuoconstruction and attention
[Diegeler 2000] 20 CABG, 7 d Group comparison 90% of CABG with decline, 0% of OPCAB with decline

20 OPCAB
[Robson 2000] 102 3 mo ≥1 SD decline on at least 1 test 7% with decline
[Ebert 2001] 42 CABG, 2 and 7 d ≥1 SD decline on at least 57% of CABG with decline at 2 to 3 d, 19% of CABG with

42 VRS 2 domains decline at 7 d
[Kilo 2001] 308 7 d, 4 mo Paired t tests No significant decline
[Millar 2001] 81 6 d, 6 mo Not specified 16% with preoperative impairment, 85% of these impaired at 

6 d, 39% still impaired at 6 mo; 84% without preoperative 
impairment, 14% of these impaired at 6 d, 2% still impaired 
at 6 mo

[Newman 2001] 261 7 d, 6 weeks, ≥1 SD decline on at least 1 test 53% with decline at 7 d, 36% with decline at 6 weeks, 24% 
6 mo, 5 y with decline at 6 mo, 42% with decline at 5 y

[Browndyke 2002] 20 CABG, 7-10 d, 1 month Multiple ANOVA Both patient groups had mild attention and learning decline 
11 VRS, at 7-10 d, returned to baseline by 1 month
25 controls

[Dogan 2002] 40 5 d, 2 mo Nonparametric tests No significant decline
[Grocott 2002a] 227 6 weeks ≥1 SD decline on at least 1 domain 39% with decline
[Keith 2002] 39 CABG, 3-4 weeks Group comparison Decline on 2 attention tests

49 control
[Mullges 2002] 52 32-65 mo ≥1 SD decline on at least 2 tests 8% with decline relative to discharge
[Swaminathan 2002] 282 6 weeks ≥1SD decline on at least one 40% with decline 

domain

Continued



S T R O K E S

Patients undergoing CABG surgery are at risk for a wide
range of neurologic injuries, such as a transient ischemic
attack, encephalopathy, and delirium. Strokes have been the
most widely studied in the cardiac literature, and perhaps
may be the most devastating and long lasting. A stroke is “a
syndrome characterized by the acute onset of a neurologic
deficit that persists for at least 24 hours, reflects focal involve-
ment of the central nervous system, and is the result of a dis-
turbance of the cerebral circulation,”[Simon 1999]. In the
setting of CABG surgery, reported stroke rates vary from
1.3% to 4.3% [Gonzalez-Scarano 1981, Gardner 1985, Jones
1991, Blossom 1992, Frye 1992, Lynn 1992, Ricotta 1995].
Strokes may have either mild to moderate (eg, problems gen-
eralizing information) or severe (eg, hemiplegia or aphasia)
impact on a patient’s quality of life.

Table 2 summarizes the work reported by our group and
others focused on identifying risk factors associated with
strokes [Newman 1996, Hogue 1999, Stamou 2001, McKhann
2002, Charlesworth 2003, Likosky 2003a]. Preoperative risk
factors common to many of these models include: age, dia-
betes, vascular disease, acuity, and low ejection fraction
[Newman 1996, Roach 1996, Hogue 1999, Stamou 2001,
Charlesworth 2003]. Intra- and postoperative factors associ-
ated with stroke include: duration of cardiopulmonary

bypass, atrial fibrillation, and low cardiac output syndrome
[Likosky 2003a].

Embolism and cerebral hypoperfusion have been identified
as the principal mechanisms associated with strokes. In a
recent study by our group, we identified the principal mecha-
nisms of 388 strokes occurring secondary to isolated CABG
surgery. Using detailed information abstracted from each
patient’s medical record, regional endpoint committees classi-
fied the strokes into one of the following etiologies: embolism,
hypoperfusion, lacunar, thrombosis, hemorrhage, multiple, or
unclassified [Likosky 2003b]. We found that embolism
accounted for 62% of strokes, hypoperfusion 9%, and multi-
ple mechanisms an additional 10%. The mechanism of a
minority (14%) of these strokes remained unclassified. Our
findings are in agreement with work done by other research
groups [Shaw 1989, Blossom 1992, Boyd 1999].

The lack in improvement surrounding stroke outcomes
may be attributed in part to two factors. First, whereas large
prospective databases, such as the Society of Thoracic Sur-
geons and the Northern New England Cardiovascular Disease
Study Group, have relatively consistent definitions for stroke,
it is unclear if the same is true for smaller local or regional
databases [STS 1999]. Of 64 articles in Medline from 1965 to
1999 meeting the inclusion criterion (article’s principal topic
was neurologic morbidity subsequent to cardiac surgery), only
19 (29.7%) offered an explicit definition of stroke. Such a lack
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Table 1. Continued

Sample Follow-up
Reference Size Interval Definition of Decline Post-CABG Findings

[Rasmussen 2002] 15 Discharge, 3 mo 2 Test z-scores or composite 46.7% with decline at discharge, 6.7% with decline at 3 mo 
z-score above 1.96

[Reents 2002] 47 6 d ≥1 SD decline on at least 2 tests 34% with decline
[Restrepo 2002a] 39 7 d ≥0.5 SD decline on at least 1 test 77% with decline
[Reynolds 2002] 33 5-6 d ≥1 SD decline on at least % Not reported

1 domain
[Stroobant 2002] 49 6-7 d, 6 mo 20% decline on 2 or more tests 61% with decline at 6-7 d, 11% with decline at 6 mo
[Van Dijk 2002] 128 OPCAB, 3 mo, 1 year 20% decline on 20% of tests 29.2% CABG with decline at 3 mo, 21.1% OPCAB with 

120 CABG decline at 3 mo, 33.6% CABG with decline at 3 mo, 30.8%
OPCAB with decline at 3 mo

[Ahlgren 2003] 23 CABG, 4-6 weeks ≥1 SD decline on at least two 48% of CABG with decline, 10% of PCI with decline
19 PCI test variables

[Lee 2003] 30 CABG, 2 weeks, 1 year 20% decline on 20% of tests, 15.4% of CABG with decline at 2 weeks, 16.1% of OPCAB
30 OPCAB ANOVA with decline at 2 weeks, 14.8% of CABG with decline at

1 year, 18.5% of OPCAB with decline at 1 year 
[Lund 2003] 23 CABG, 3 mo Parametric and nonparametric 35% of CABG with decline, 29% of OPCAB with decline 

29 OPCAB tests
[Mathew 2003] 460 CABG 6 weeks ≥1 SD decline on at least 1 of 36% with decline 

4 cognitive factors
[Selnes 2003] 140 CABG, 3 mo, 1 year ANOVA Both groups improved by 3 mo, with greater improvement

92 controls in verbal memory for CABG, no group differences at 1 year
[Knipp 2004a] 35 1-7 d, 3 mo ANOVA Decline in attention, memory and spatial skills at 1-7 d, 

Decline in memory and reasoning at 3 mo

*MMSE indicates Mini–Mental State Examination; ANOVA, analysis of variance; OPCAB, off-pump coronary artery bypass; VRS, valve replacement surgery;
PCI, pericutaneous coronary intervention;
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of explicit outcome variable definitions makes comparison
and/or verification of findings difficult and therefore hinders
progress in improving stroke outcomes. Second, most studies
investigating strokes after CABG surgery are insufficiently
powered due to the rarity of this event. Conclusions drawn
from these studies often lead to misleading results and unstable
estimates of associations between risk factors and stroke.

Stroke, although rare, is often a devastating complication
of CABG surgery. Although much work has focused on iden-
tifying preoperative risk factors, greatest benefit will likely
result from efforts aimed at reducing modifiable factors dur-
ing the intra- and postoperative care and course.

C E R E B R OVA S C U L A R  N E U R O I M AG I N G

It is clear that reliance on clinical signs and symptoms will
lead to detection of only a minority of adverse neurologic
outcomes. In our experience within northern New England,
the overall rate of new fixed neurologic deficits (1992-2001)
was 1.7%, with a case-fatality rate of 22.9%. Nearly 80% of
patients having strokes had brain imaging performed in

response to their clinical presentation. In patients undergoing
brain imaging, more than 90% of the examinations were per-
formed using computed tomograpy (CT). CT was chosen
because it can be rapidly performed, requires no screening
for contraindicated implants (eg, cardiac pacemakers) or con-
ditions (eg, claustrophobia), and reliably shows acute intrac-
erebral hemorrhage. Our regional experience is similar to
that reported by other large clinical series [Selnes 1999b].
Unfortunately CT will detect only large areas of recent cere-
bral ischemia, is particularly insensitive in the posterior fossa,
and often does not distinguish acute versus chronic injury.

MRI for acute stroke has improved markedly in the last
5 years. Conventional MRI, generally consisting of T1- and
T2-weighted images, is more sensitive and specific than CT
for small acute infarcts. The infarct becomes visible as an area
of abnormal signal, hyperintense on T2-weighted images and
hypointense on T1-weighted images within 12 to 24 hours.
For the cortical infarcts common in the setting of embolism,
the infarct will extend to the brain surface, involving both the
cortex and the subcortical white matter. FLAIR (fluid-attenu-
ated inversion recovery) imaging improves the conspicuity of
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Table 2. Summary of Studies Identifying Predictors of Neurologic Deficits after Coronary Artery Bypass Grafting (CABG)

Author Reported Model
Reference Sample Size Risk Factors Identified Definition of Neurologic Deficit Performance

[Newman 1996] 2107 patients  Age, history of previous neurological Neurologic deficit: cerebrovascular accident ROC area: 0.78
undergoing elective disease, diabetes, history of vascular or stroke, transient ischemic attack, coma at
CABG disease, previous coronary artery surgery, discharge, or central nervous system death.

unstable angina, and history of pulmonary No further definitions were provided.
disease

[Mckhann 1997b] 456 patients  Preoperative: previous stroke, presence of Stroke: any persistent focal neurologic deficit NA
undergoing CABG  carotid bruit, history of hypertension, lasting 24 hours or more
and validation sample increasing age, and history of diabetes 
of 1298 patients mellitus; intraoperative: cardiopulmonary 

bypass time
[Hogue 1999] 2972 patients Early stroke: prior neurological event, aortic Stroke: any new permanent global or focal NA

undergoing CABG atherosclerosis, and duration of cardio neurological deficit that could not be 
and/or valve surgery pulmonary bypass; delayed stroke: prior attributed to other neurological (eg, 

neurological event, diabetes, aortic dementia) and/or medical (ie, metabolic 
atherosclerosis, and combined end points abnormalities, hypoxia, or drugs) processes.
of low cardiac output and atrial fibrillation

[Stamou 2001] 16,528 consecutive Preoperative: chronic renal insufficiency, Stroke: any new major (type II) neurological NA
patients who and moderate/severe left ventricular deficit presenting in the hospital and 
underwent CABG dysfunction; intra- and postoperative: persisting >72 hours  

low cardiac output syndrome, and atrial 
fibrillation

[Likosky 2003b] 11,825 consecutive Intra- and postoperative: cardiopulmonary Stroke: a new neurologic deficit which appears ROC area: 0.73
patients undergoing bypass duration >90 minutes, prolonged and is still at least partially evident more than 
isolated CABG inotrope use, and atrial fibrillation 24 hours after its onset, occurring during or 

following the CABG procedure and 
established before discharge

[Charlesworth 33,062 consecutive Preoperative: age, gender, presence of Stroke: a new neurologic deficit which appears ROC area: 0.70 
2003] patients undergoing diabetes, presence of vascular disease, and is still at least partially evident more than 

isolated CABG renal failure or creatinine greater than 24 hours after its onset, occurring during or
or equal to 2 mg/dL, ejection fraction following the CABG procedure and 
less than 40%, and urgent or emergency established before discharge



these acute infarcts. However, in older people there are often
many foci of signal abnormality that may mimic an acute
infarct, and none of these conventional MRI sequences may
make this differentiation for small infarcts. The real break-
through in early infarct detection has come with diffusion-
weighted MRI (DWI). This technique has a sensitivity and
specificity of 97% and 100%, respectively, at 6 hours post
ictus [Mullins 2002].

New brain imaging approaches offer earlier detection of
new lesions and quantification of later atrophic changes.
DWI appears to characterize and measure much more accu-
rately the extent of recent cerebral ischemia [Kelly 2001,
Kohn 2002]. The apparent diffusion coefficient (ADC) meas-
ured from DWI becomes abnormal within minutes to hours
after injury and remains so for up to 7 days. In the appropri-
ate clinical setting, the specificity of ADC maps for acute
ischemia is high. When using DWI to assess intraoperative
events, preoperative imaging is important to exclude infarcts
not related to the surgery, because many CABG patients have
diabetes and peripheral vascular disease and are predisposed
to ischemic events. Only few small-scale studies have used
this pre- and postoperative MRI protocol [Schmidt 1993,
Kohn 2002, Restrepo 2002, Knipp 2004].

Although previous studies have provided information sur-
rounding the quantification of acute lesions after cardiac
surgery, new imaging methodology and protocols are war-
ranted. Advances in computational approaches for analyzing
more conventional MRI sequences (eg, T1-weighted volu-
metric scans) make it possible to automatically segment the
brain into gray and white matter and cerebrospinal fluid and
to measure these tissue compartments to document atrophic
and other changes [Van Leemput 1999, Agartz 2001, Bokde
2002, Fischl 2002]. Voxel-based morphometry (VBM), which
involves analysis of tissue characteristics on a voxel-by-voxel
basis using brain-mapping statistics similar to those used for
functional brain imaging [Ashburner 2000], has begun to be
widely applied to analysis of structural MRI scans in other
clinical settings [Keller 2002, Salgado-Pineda 2003]. Cere-
brovascular risk factors have been associated with global and
local brain atrophy [Meyer 2000, DeCarli 2001], but there
has been little systematic or quantitative long-term follow-up
investigation of atrophic changes after CABG. These changes
might explain the cognitive deficits observed in many long-
term follow-up studies.

Great technical strides have been made in neuroimaging
modalities. These devices have allowed clinicians and
researchers to identify the presence/absence of acute lesions
more reliably in the postoperative setting. In addition, func-
tional MRI technology offers opportunities for researchers
to map regional brain activity during cognitive function,
which could permit quantification of the extent of functional
injury secondary to CABG surgery, but such studies remain
to be done.

B I O M A R K E R S  O F  C E R E B R A L  DA M AG E

Current methods (neurologic exam, CT or MRI, neuro-
psychological evaluation) for detecting and diagnosing subtle

neurologic injuries are not suitable in the immediate post-
operative period after coronary revascularization procedures.
During this time, patients are often unconscious, sedated, or
uncooperative. As such, a serum-based test (eg, S-100) may
provide the opportunity to detect these neurologic deficits at
a more opportune time [Ali 2000, Matata 2000].

S-100 is an acidic calcium-binding protein that is found in
high concentrations in glial and Schwann cells and is metab-
olized in the kidney and excreted in urine [Buttner 1997].
S-100 has several subunits, but its � subunit is highly brain
specific and has a half-life of approximately 2 hours. S-100
has been considered to play a contributory role in Alzheimer’s
disease [Griffin 1989]. Levels of S-100 have been reported in
patients with acute stroke and in patients undergoing coro-
nary revascularization procedures [Johnsson 1995, Westaby
1996, Blomquist 1997, Buttner 1997, Missler 1997, Grocott
1998a, Jonsson 1998, Georgiadis 2000]. In these studies, S-100
levels have been correlated with infarct volume (using volu-
metric CT) [Missler 1997]. In addition, S-100 levels have
reportedly increased shortly after bypass and have been cor-
related with microembolic load, age, history of stroke or
transient ischemic attack, degree of carotid stenoses, and
duration of cardiopulmonary bypass, all of which have previ-
ously been identified as risk factors for stroke [Johnsson 1995,
Westaby 1996, Blomquist 1997, Grocott 1998a]. Westaby, in
a study of 34 patients free from neurologic deficits who
underwent CABG surgery, did not find detectable levels of
S-100 in patients undergoing off-pump CABG [Westaby
1996]. Jonsson and colleagues have shown that blood from
both the surgical field and the mediastinum may inflate early
sampling of S-100 values shortly after surgery [Jonsson 1999]
and therefore suggest the use of cell-saving devices and sam-
pling periods greater than 24 hours after surgery. Grocott and
colleagues identified associations between number of detected
cerebral embolic signals (using transcranial Doppler ultra-
sonography) with processes of clinical care and biological
markers of cerebral injury [Grocott 1998b]. In this series of
156 patients, the authors divided the surgical procedure into 4
intervals: (1) incision to aortic cannulation, (2) aortic cannula-
tion to aortic cross clamp, (3) aortic cross-clamp onset to aortic
cross-clamp release, (4) aortic cross-clamp release to decannu-
lation, and (5) decannulation to chest closure. The authors
found the highest correlation between embolic signals and
S100� levels during period 2. Although this study is important
in its linkage between process of care, embolization, and S100�
levels, a few limitations are noteworthy: (1) the authors did not
conduct bilateral Doppler monitoring, (2) the authors did not
identify variations in the conduct of each of the processes of
care, (3) the authors did not link S100� levels with other
mechanisms of neurologic injury, such as cerebral hypoperfu-
sion.

Apolipoprotein E4 (ApoE-4) has been implicated as a risk
factor for development of Alzheimer’s disease [Edwardson
1998]. Controversy currently exists regarding its influence on
neuropsychological decline after CABG surgery. Tardiff stud-
ied the risk of cognitive deficit among 65 patients who carried
the ApoE-4 allele and underwent cardiac operations [Tardiff
1997]. A significant association existed between the presence
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of the ApoE-4 allele and risk of cognitive decline at 6 weeks
following surgery, once results were adjusted for year of edu-
cation. Tardiff noted that educational level modulated the
extent of association between ApoE-4 allele and risk of cogni-
tive decline. The effect seen in this cohort with regard to
memory and cognitive decline was similar to that seen in the
early stages of Alzheimer’s disease. Steed repeated the analysis
performed by Tardiff on a larger sample of patients undergo-
ing CABG surgery [Steed 2001]. Steed reported no significant
association between the ApoE-4 allele and cognitive change,
measured either by individual genotype or categorized by the
presence or absence of the ApoE-4 allele. Other genetic risk
factors in surgical candidates remain to be examined.

The full benefit of measuring biomarkers of neurologic
injury has yet to be realized, likely as a consequence of a lack of
sensitivity/specificity of the current assays. Future work should
be focused on more brain-sensitive markers, as well as further
linkage between these assays and the mechanisms causing the
neurologic injuries. It is likely that polygenic models of vulner-
ability to brain insult will need to be developed.

O F F - P U M P  V E R S U S  T R A D I T I O N A L  C A BG

There has been a great deal of interest in the off-pump
coronary artery bypass (OPCAB) procedure and its use to
avoid the associated deleterious effects of the cardiopul-
monary bypass machine, such neurologic injury. Exposure to
the bypass machine may be associated with an increase in
embolic burden to the brain and other end organs, platelet
dysfunction, and initiation of the inflammatory process [Inada
1990, Murkin 1997, Brown 2000, Rose 2003]. As such, the use
of the OPCAB procedure has been heralded as a safe alterna-
tive for myocardial revascularization. There have been numer-
ous reports in the literature concerning the relationship
between OPCAB and neurologic injury [Hernandez 2000,
Svennevig 2000, Grunkemeier 2002, Karamanoukian 2002,
Van Dijk 2002, Lazar 2003, Lee 2003, Nathoe 2003, Schmitz
2003]. We shall highlight the current state of this debate.

Several studies have suggested associations between the
use of the cardiopulmonary bypass circuit and the occurrence
of adverse neurologic outcomes. Selnes, in a 1999 review arti-
cle, described a variety of neurologic deficits experienced sec-
ondary to cardiopulmonary bypass [Selnes 1999a]. These
included strokes, postoperative delirium, short- or long-term
cognitive changes, and depression [Selnes 1999a]. Studies by
Mills and colleagues determined that these changes may not
be related to depression or anxiety but may likely be a conse-
quence of cardiopulmonary bypass [Mills 1993]. Van Dijk and
colleagues randomized 248 patients to undergo on- versus
off-pump CABG surgery. Cognitive outcome was measured
in accordance with published standards and was assessed at
baseline and at 3, and 12 months [Murkin 1995]. There was
an initial benefit in cognitive function at 3 months, although
differences between groups were diminished at 12 months.
However, studies assessing clinical stroke have found only
slightly lower stroke rates among patients having beating
heart surgery than those having cardiopulmonary bypass.
Among 7867 consecutive patients (1741 OPCAB, 6126 CABG)

having surgery between 1998 and 2000, Hernandez and col-
leagues showed that there was a 35% reduction in stroke risk
for patients undergoing OPCAB versus traditional CABG
surgery (1.34% versus 1.81%) [Hernandez 2001]. More
recently, Nathoe and colleagues, in a study of 281 patients ran-
domized to OPCAB (142 patients) versus CABG (139 patients)
found that patients in both groups had equivalent graft
patency, death, stroke, and Q-wave and non–Q-wave myocar-
dial infarction [Nathoe 2003]. These results persisted both
during and 1 year after the index admission. One limitation
to this study was that fewer enrolled patients had 3-vessel dis-
ease than patients in other published studies.

It is plausible that cardiopulmonary bypass plays a role in
producing adverse neurologic outcomes following CABG
surgery, but the etiology is as yet unclear. The most com-
monly reported mechanisms associating cardiopulmonary
bypass with neurologic injury appear to be the initiation of
the systemic inflammatory response and microembolization
via the manipulation of atherosclerotic aortas. In a study by
Matata and colleagues, OPCAB was associated with lower
levels of oxidative stress and less systematic inflammatory
response [Matata 2000]. OPCAB might influence neurologic
injury in ways other than embolization and initiation of the
systemic inflammatory response. Do and colleagues reported
results on 55 patients undergoing OPCAB between 1998 and
1999 [Do 2002]. Comparisons were made between hemody-
namics (systemic arterial pressure, pulmonary artery pressure,
cardiac output, and mixed venous oxygen saturation) at the
end of an anastomosis and at baseline. The investigators
found changes in hemodynamics more pronounced during
the manipulation of the anterior arteries, especially in regard
to pulmonary artery pressure and cardiac output. These find-
ings were further elucidated in a review article by Couture
and colleagues, who outlined the differences in the hypoten-
sion profiles of various stabilizing devices [Couture 2002].
Couture concluded that compression-type stabilizing devices
resulted in compression of the left ventricular outflow tract,
whereas suction-type devices likely result in compression of
the right ventricle. Murkin further elucidated the relationship
between hemodynamic instability and neurologic injury via
cardiac manipulation and subsequent right ventricular com-
pression [Murkin 2002]. Murkin concluded that the surgical
team should use cerebral monitoring and avoid aortic manip-
ulation for patients considered at risk for neurologic injury.

Numerous comparisons have been made between on- and
off-pump surgery. Neurologic outcomes, whether defined as
focal or global, seem to be equivalent across the 2 groups.
Off-pump surgery seems to afford a protective effect for cere-
bral embolization, although possibly with the consequence of
greater hypoxia.

I N T R AO P E R AT I V E  C A R E  A N D  
M A N AG E M E N T  O P PO RT U N I T I E S

Evidence regarding the source, extent, and effects of
embolic load during and after surgery comes from several
sources. Baker, using transcranial Doppler to measure
emboli, found the highest embolic load associated with the

E656



application of the aortic cross clamp, and the highest rate of
emboli at the onset of cardiopulmonary bypass [Baker 1995].
In a subsequent study, Barbut reported that the number of
emboli is often unevenly distributed among the different
stages of surgery [Barbut 1997]. Although the application
and subsequent removal of the aortic cross clamp has
accounted for more than 60% of the total number of emboli
in some studies, flurries have also been detected during aor-
tic cannulation and inception and termination of bypass.
Increased numbers of emboli are likely to be associated with
increased risk of neurologic injury. Pugsley found an
increased risk of neuropsychological deficits among patients
having increased numbers of detected emboli [Pugsley
1994]. If surgical techniques are associated with the creation
of emboli and subsequent identification of neurologic
injuries, as the work by Barbut, Baker, and Pugsley suggests,
modifications of these techniques are likely to reduce the
occurrence of neurologic injury.

Detailed analyses have revealed that emboli may be
attributed to processes controlled by both surgeons and per-
fusionists. Stump and colleagues, monitoring the left common
carotid artery, identified specific surgical events/techniques
associated with emboli. These researchers found that the
greatest percentage of emboli came from the removal of the
partial occlusion clamp. However, the authors could not
identify any surgical events/techniques associated with nearly
one third of all detected emboli [Stump 1993a]. Taylor and
colleagues suggested that a portion of these latter emboli may
be attributed to interventions controlled by the perfusionist,
such as the injection of medication [Taylor 1999].

Regional cerebral hypoperfusion may result from patients
suffering from chronic hypertension, diabetes, or senile
atherosclerotic disease. Chronic hypertension may result in a
narrowing of penetrating arteries (leading to susceptibility to a
lacunar stroke in the setting of cerebral hypoperfusion),
decreased collateral flow, or reduction in ischemic tolerance
through alterations in the autoregulatory curve [Cook 2000].
Controversy surrounds the appropriate level of mean arterial
blood pressure (MAP) during and following surgery. Gold,
in a prospective randomized study of 248 elective CABG
patients, found that patients maintained at higher levels of
MAP (80-100 mm Hg) during cardiopulmonary bypass had
lower levels of neurologic deficits [Gold 1995]. Stockard, in a
prospective study of 25 consecutive CABG patients, did not
find an association between neurologic deficits and the extent
or duration of hypotension [Stockard 1973]. Barbut, in a series
of 100 patients continuously monitored by transcranial
Doppler, found a relationship between neurologic outcome
and duration of cerebral hypoperfusion, defined as cerebral
flow velocity. They found a 17% reduction from baseline per-
fusion rates in patients without neurologic deficits, and a 43%
reduction in patients suffering strokes. Those free from deficits
were perfused <50% from baseline, one third less, on average,
than those suffering strokes. Notably, the number of emboli
was lower in those without neurologic deficits [Barbut 1997].

Several small studies have used levels of measured mixed
venous cerebral oxygenation during CABG surgery as a proxy
for identifying intervals of intraoperative cerebral ischemia.

Edmonds, using near infrared spectroscopy to measure mixed
venous cerebral oxygenation, found that 18% of patients
undergoing revascularization procedures had oxygen satura-
tions 25% below preoperative baseline [Edmonds 2000].
Cerebral oxygen desaturation was not found to be associated
with either systemic arterial or mixed venous oxygen satura-
tion, suggesting that measurements of systemic oxygenation,
often used to infer levels of cerebral oxygenation, are unsuit-
able [Edmonds 1997]. Oxygen saturation levels below 25% of
baseline have been found to be associated with disorientation
and subtle frontal lobe injury [Edmonds 1998a, 1998b].

Measurements of hemodynamics have been studied among
patients undergoing both off- and on-pump procedures. In
one cohort study of 55 patients undergoing CABG surgery
without extracorporeal circulation, significant drops occurred
in mean systemic arterial pressure and cardiac output after the
completion of anastomoses, and significant increases occurred
in mean pulmonary arterial pressure [Do 2002]. Reich quanti-
fied the association between intraoperative hemodynamic
information and a patient’s risk of death, stroke, or periopera-
tive myocardial infarction [Reich 1999]. Reich found that both
hypertension (pulmonary and postbypass pulmonary diastolic)
and hypotension during cardiopulmonary bypass were associ-
ated with each of these 3 outcome measures. Most associa-
tions found between hemodynamics and adverse outcomes
stem from predefined aberrations (mean arterial blood pres-
sure <70 mm Hg) from normality [Cartwright 1998, Hartman
1998]. These relatively arbitrary cutoffs prohibit identifica-
tion of the natural forms of the distribution of, for instance,
mean arterial pressure. Additionally, hemodynamic informa-
tion is often sampled every 5 minutes, making it impossible to
investigate at a higher resolution the relationship between
hemodynamic changes and potential outcome variables such
as neurologic injuries. Criticisms regarding the use of these
cutoff points and of hand-written anesthesia records have sur-
faced and focused on arbitrary standards of normality and
inaccuracies, respectively [Hollenberg 1997].

Sustained reductions in neurologic injury will likely result
from the redesign of clinical care to reduce modifiable clinical
techniques associated with embolization, hypoxia, and sus-
tained hypotension. This redesign will require the combined
efforts of all clinical stakeholders: surgeons, anesthesiologists,
perfusionists, and nursing staff.

W H AT  T H E  F U T U R E  H O L D S

Although interesting and important, much of the litera-
ture surrounding neurologic injury has lacked critical infor-
mation in part because (1) many preoperative variables are
nonmodifiable (such as age, sex, and medical comorbidities)
and (2) some of the modifiable factors associated with the
onset of neurologic injury may be a consequence of currently
unidentified and unstudied surgical and perfusion techniques.
The 3 dominant mechanisms of neurologic injury are embo-
lization, hypoxia, and hypotension. Sustainable reductions
in neurologic injury will likely occur through the identifica-
tion of associations between potentially modifiable surgical
and perfusion techniques with the causes of neurologic
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injury (embolism, cerebral hypoperfusion, and hemodynamic
instability, respectively). To date, no single study has cur-
rently combined information concerning all 3 of these, nor
identified the surgical techniques that are associated with
their creation. Our group has begun such a study among
patients undergoing coronary and/or valvular procedures
[Likosky 2004].

C O N C LU S I O N

Reduction in the extent of neurologic injury after CABG
will require 3 factors. First, studies must be appropriately
powered to detect the most plausible effect, whether a rare
outcome such as stroke or the more prevalent cognitive
deficit. Second, editors must require authors to provide infor-
mation (operational definitions for outcome variables, similar
statistical analyses, and measurement tools) sufficient for
comparisons across studies, as suggested by Murkin and col-
leagues [1995]. Third, information concerning the associa-
tion between clinical events/techniques and the causes of
neurologic injury (embolism, cerebral oxygen desaturation,
and hemodynamics) should be used to redesign cardiac
surgery to minimize their occurrence.
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