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Abstract

Background: This study aimed to select anesthesia-
induced zinc finger protein-related gene biomarkers that
predict cardiovascular function during off-pump coronary
artery bypass grafting (OPCABG). Methods: Gene ex-
pression data from GSE4386 included 20 post-anesthesia
and 20 pre-anesthesia atrial tissue samples. Zinc fin-
ger protein-related genes (ZFPRGs) were searched in the
UniProt database and anesthesia-induced differentially ex-
pressed genes (DEGs) were identified Weighted gene
co-expression network analysis (WGCNA) was used to
screen hub genes, and three machine learning algorithms
were used to further screen for cardiovascular biomark-
ers. Diagnostic accuracy was evaluated using a nomo-
gram model. Gene set enrichment analysis was used to
analyze the pathways enriched by the biomarkers. A mi-
croRNA (miRNA)-mRNA-transcription factor (TF) reg-
ulatory network was established to explore the potential
regulatory mechanisms of these biomarkers. Disease-
related drugs were predicted using the Comparative Tox-
icogenomics Database (CTD). Results: A total of 1102
cardioprotection-related DEGs were selected between the
pre- and post-anesthesia groups. Additionally, 1095 hub
genes were obtained based onWGCNA, and 2274 ZFPRGs
were downloaded from the UniProt database. After Venn
analysis and machine learning, ZNF420, RNF135, and
BNC2 were selected as cardioprotection-related zinc fin-
ger biomarkers during OPCABG. Receiver operating char-
acteristic (ROC) curves and nomogram models confirmed
the diagnostic value and accuracy of the three cardioprotec-
tive biomarkers. Pathway enrichment analysis revealed that
ZNF420 is involved in the cell cycle and the tricarboxylic
acid cycle. RNF135 and BNC2 were enriched in the oxida-
tive phosphorylation pathway. In the constructed miRNA-
mRNA-TF network, miR-182-5p and miR-16-5p simulta-
neously regulated three cardioprotective biomarkers. Con-
clusion: Three cardioprotection-related zinc finger protein
biomarkers (ZNF420, RNF135, and BNC2) were identified
using OPCABG samples.
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Introduction

Off-pump coronary artery bypass grafting (OPCABG)
is an innovative procedure in cardiac surgery that has
emerged in recent years, avoiding systemic inflammation,
coagulation dysfunction, myocardial damage, multiple or-
gan dysfunction, and other after-effects of extracorporeal
circulation [1,2]. OPCABG also reduces the risk of neu-
rological complications compared to extracorporeal coro-
nary artery bypass grafting [3,4]. OPCABG is a myocardial
revascularization program that improves hemodynamic pa-
rameters and reduces sympathetic nerve pressure [5]. Af-
ter OPCABG, the incidences of post-operative mortality
and stroke in older individuals are extremely low, suggest-
ing that this surgery is safe for coronary artery disease in
this population [6]. OPCABG accounts for 15–30% of
all cases of coronary artery bypass grafting (CABG) and
presents with excellent short-term outcomes [7]. Although
OPCABG has become the gold standard treatment for mul-
tivessel coronary artery disease, it is associated with ir-
reversible myocardial injury [8]. Thus, reducing cardiac
damage and improving post-ischemic recovery remain to
be achieved.

During surgery, patients must be anesthetized [9].
Common anesthetic methods include inhalation and intra-
venous administration. Anesthesia with sevoflurane re-
duces the release of cardiac biomarkers [10]. Total intra-
venous anesthesia with propofol can be induced quickly
and stably during recovery, with few side effects. They are
harmless and more effective than hypnotic drugs [11]. In
addition, it can reduce myocardial reperfusion injury in pa-
tients undergoing OPCABG [12]. Growing evidence sug-
gests that sevoflurane and propofol have cardioprotective
effects [13]. Moreover, anesthetic gas administration can
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modulate the expression of target genes involved in my-
ocardial substrate metabolism and protect cardiac function
[14]. Thus, anesthetic-induced cardiac biomarkers play a
key role in cardiac protection.

Zinc finger proteins are among the most abundant
families of proteins. They can interact with ribonucleic
acid (RNA), deoxyribonucleic acid (DNA), and poly-ADP-
ribose, and are involved in the regulation of many cellu-
lar processes [15]. Zinc finger proteins are associated with
cardiovascular diseases [16,17]. Meng et al. [18] impli-
cated the zinc finger transcription factor ZFP580 in the car-
dioprotective effects of intermittent high-altitude hypoxia
against myocardial ischemia-reperfusion injury. However,
whether zinc finger proteins can serve as anesthetic-induced
cardioprotective biomarkers remains unclear.

In this study, we selected anesthesia-induced
cardioprotection-related zinc finger protein biomarkers.
Weighted gene co-expression network analysis (WGCNA)
was used to screen hub genes, and three machine learning
algorithms were applied to further screen biomarkers.
Additionally, a miRNA-mRNA transcription factor (TF)
regulatory network was established to explore the potential
regulatory mechanisms of the biomarkers. The diagnostic
accuracy of biomarkers was evaluated using a nomogram
model. Our results may improve our understanding of
the mechanisms underlying the cardioprotective effects of
anesthesia during OPCABG.

Materials and Methods

Data Sources

The gene expression profile dataset GSE4386, which
contained samples associated with OPCABG using the
anesthetic gas sevoflurane and intravenous anesthetic
propofol, was downloaded from the Gene Expression Om-
nibus (GEO) database and used in this study. In a prospec-
tive randomized trial with ethics committee approval, male
patients with three-vessel coronary artery disease aged 50–
80 years were included and allocated to receive either
sevoflurane (n = 10) or propofol (n = 10) [1]. For each
patient, two atrial samples (immediately after chest open-
ing and shortly before chest closing) were collected. The
former reflected the background expression profile before
exposure to anesthesia (control group), whereas the lat-
ter mirrored the gene response to anesthesia (anesthesia
group). The dataset was developed using the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array annotation platform.

Zinc finger protein-related genes (ZFPRGs) were
searched from the UniProt database with “zinc finger pro-
tein” as the keywords, and the organism parameter was set
to Homo sapiens.

Differentially Expressed Genes (DEGs) Screening

Series matrix files were downloaded and log2 trans-
formed. The annotation information of gene expres-
sion data was downloaded based on the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0.
The probes were mapped to gene symbols, and probes with
no match to the gene symbols were removed. For different
probes mapped to the same gene, the mean value of differ-
ent probes was calculated as the final expression value of
the given gene. TheDEGs between the anesthesia (propofol
or sevoflurane) and control groups were analyzed using the
R package limma 3.42.2 (Bioconductor, Dana-Farber Can-
cer Institute, Boston, Massachusetts, USA). The screening
conditions for DEGs were p < 0.05 and |log2FC| > 0.5.
R packages ggplot2 3.3.2 and pheatmap 0.7.7 were used to
visualize the results. The online tool jvenn was used to de-
termine the intersection of the DEGs caused by propofol
and sevoflurane.

WGCNA

To filter the potential genes associatedwith anesthesia,
a weighted gene co-expression network was constructed
based on the expression matrix of the DEGs. First, the
samples were clustered, and outlier samples were elimi-
nated. A soft threshold was then determined to ensure
that the interactions between genes conformed to a scale-
free distribution. The recommended optimal power value
in the WGCNA package (1.70.3) (University of Califor-
nia, Berkeley, CA, USA) [19] was 14. Subsequently, a
co-representation matrix was constructed. Briefly, the adja-
cency between genes was calculated, the similarity between
genes was calculated according to adjacency, and the di-
vergence coefficient between genes was derived to obtain a
systematic clustering tree. The minimum number of genes
in each module was set based on the dynamic tree-cutting
algorithm. To screen out the key modules that were highly
correlated with anesthesia, the modules that were equally
correlated with the sample traits were screened as key mod-
ules (p< 0.05; correlation coefficients>0.3). Genes in key
models were considered hub genes.

Differentially Expressed (DE) ZFPRG Screening

Based on the 2274 ZFPRGs obtained from the UniProt
database, common DEGs and hub genes obtained from
WGCNA and the intersection genes (DE ZFPRGs) were
screened using jvenn.

Functional Analysis of DE ZFPRGs

To dissect the potential functions related to DEZF-
PRGs, Gene ontology (GO) functional enrichment analyses
were conducted using R ClusterProfiler 3.14.3 (developed
by Guangchuang Yu, Key Laboratory of Functional Protein
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Research of Guangdong Higher Education Institutes, Jinan
university, Guangzhou, China) [20]. The GO database was
constructed using three independent categories: biological
processes (BP), cellular components (CC), and molecular
functions (MF). GO terms with p < 0.05 were considered
significant, and the top 10 enrichment results in each cat-
egory were visualized using ggplot 2 3.3.2 (developed by
Hadley Wickham, University of Auckland, Auckland, New
Zealand).

Correlation Analysis of DE ZFPRGs

Combined with the anesthesia grouping information
of the samples, the correlation between genes was calcu-
lated using the Pearson method, and the corresponding cor-
relation coefficient and p value were obtained. The R pack-
age ggplot2 3.3.2 was used to visualize the correlation re-
sults.

Biomarker Screening by Machine Learning

Machine learning algorithms are increasingly used
for biomarker identification. In this study, three machine
learning algorithms (Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regression analysis, support vector
machine (SVM), and random forest) were used to screen
biomarkers.

(1) Using the expression values of DE ZFPRGs in
samples from the dataset GSE4386, combined with sam-
ple grouping, LASSO regression prediction sample classi-
fication was constructed. To reduce the characteristic di-
mension, the R glmnet 4.0-2 (developed by Trecor Hastie,
Stanford university, San Francisco, CA, USA) [21] was
used with parameters family = “binomial”, type. measure
= “class”, nfold = 10 to perform LASSO logistic regres-
sion. A 10-fold cross-validation was used to calculate the
error rate for different characteristics. Feature genes were
selected when the criteria for lambda min were used.

(2) The SVM algorithm in R E1071 1.7-9 (R Devel-
opment core team, University of Auckland, Auckland, New
Zealand) [22] embedding 5-fold cross-validation was used
to sort the DE ZFPRGs. A recursive feature elimination
method was used to obtain the importance and importance
ranking of each gene, and the error rate and accuracy of each
iteration combination were obtained. The combination with
the lowest error rate was selected, and the corresponding
genes were selected as characteristic genes.

(3) The random forest method in R package ran-
domForest 3.36.0 (University of California, Berkeley, CA,
USA) was used to screen characteristic genes based on the
24 DE ZFPRGs, and the obtained genes were ranked by two
methods: mean decrease accuracy and mean decrease gini.
The top 10 genes were selected and visualized in lollipop
charts.

Finally, the characteristic genes screened by the three
algorithms were intersected using the R package UpsetR
1.4.0 (Jake R. Conway, Boston, MA, USA). The genes in
the intersections were considered biomarkers.

Diagnostic Value, Correlation, and Regulatory Network
Analyses of Biomarkers

To assess the diagnostic value of the biomarkers, re-
ceiver operating characteristic (ROC) curve analysis was
performed for each biomarker using the R package pROC
1.12.1 (Robin X, BioMed Central Ltd., Geneva, Switzer-
land). Additionally, the expression values of biomarkers
were extracted from the dataset GSE4386 and plotted using
the Wilcoxon test method in ggplot2 3.3.2, combined with
the sample grouping information of the dataset.

The expression levels of biomarkers were obtained
from the dataset, and the correlation between biomarkers
was calculated using the Pearson method in the anesthesia
samples of the dataset combined with the anesthesia group-
ing of samples.

Additionally, protein-protein interaction (PPI) regu-
latory network analysis of biomarkers was performed us-
ing the GeneMANIA database to predict co-localization,
shared protein domains, co-expression, and pathways.

Nomogram Construction

A nomogram model was constructed to verify the di-
agnostic value of the selected biomarkers in cardiovascular
diseases. Based on the biomarkers obtained above, RMS
6.4-1 (Harrell Jr, Duke University, Durham, NC, USA) [23]
was used to construct the nomogram prediction model, and
calibration and ROC curves were used to evaluate the pre-
dictive ability of the nomogram.

Gene Set Enrichment Analysis (GSEA)

To understand the biological value of a single
biomarker, GSEA was performed for each biomarker us-
ing the GSEA software 4.0.3 (Fred Hutchinson Cancer Re-
search Center, Seattle, WA, USA). The “c2.cp.kegg.v7.5.1.
symbols.gmt”, and “c5.go.bp.v7.5.1. symbols.gmt” were
used as reference gene sets for KEGG and GO BP, respec-
tively. The thresholds of significance were |NES| >1 and
NOM p < 0.05.

Regulatory Network Analysis

MiRNAs and TFs play crucial roles in the regulation
of gene expression. To explore the regulatory mechanism
of gene biomarker expression, a miRNA-mRNA-TF reg-
ulatory network was constructed. The miRNA prediction
of biomarkers was performed using the NetworkAnalyst
database (parameters: Specify organism: H. sapiens, Gene-
miRNA interaction database: TarBase v8.0). Addition-
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Table 1. List of primer sequences.
Symbol Sequences

BNC2
Forward 5′-CTTTTCAAAGTTGCTGAAATAAAA-3′
Reverse 5′-TTGCATTTAATGGCCTCAGA-3′

ZNF420
Forward 5′-AGACAATATCCCGCTGTACGAATATCCTGTAGT-3′
Reverse 5′-ATTCCCCGAGATAAATCCGATTATGAAGCC-3′

RNF135
Forward 5′-CTGCGGAAGAACACGCTACT-3′
Reverse 5′-GCTCAGTTCGTTGTCTGGTCC-3′

GAPDH
Forward 5′-CCACTCCTCCACCTTTGAC-3′
Reverse 5′-ACCCTGTTGCTGTAGCCA-3′

ally, TF prediction was performed using the NetworkAn-
alyst database and the parameters were Specify organism:
H. sapiens, TF-gene interaction database: ENCODE. With
the obtained miRNA-mRNA and mRNA-TF relation pairs,
the miRNAs and TFs that regulated the same mRNA were
selected to establish the miRNA-mRNA-TF regulatory net-
work using Cytoscape 3.6.1 (University of California, San
Diego, Chile).

Drug Prediction Using Biomarkers

Disease-related drugs were predicted by using each
biomarker as a keyword in the Comparative Toxicoge-
nomics Database (CTD) database. Cytoscape (version
3.6.1) was used to visualize the drug-target relationship net-
work.

Validation of the Expression of Biomarkers by Real-time
PCR Analysis

Five patients withmulti-vessel coronary artery disease
who underwent OPCABG at our hospital were enrolled.
This study was approved by the Ethics Committee and con-
ducted in compliance with the Declaration of Helsinki. Five
pairs of cardiac tissues were collected before (immediately
after chest opening) and after anesthesia (shortly before
chest closing). The tissue samples were stored at –80 °C
for further use.

For Reverse transcription quantitative polymerase
chain reaction (RT-qPCR) analysis, total RNA was ex-
tracted from cardiac tissues using the TRIzol reagent.
cDNA was obtained from RNA samples (1 µg) based on
a cDNA synthesis kit (Thermo Fisher Scientific, Waltham,
MA, USA). Real-time PCR was performed using a Bio-
Rad real-time PCR system. The primer sequences used for
ZNF420, BNC2, and RNF135 are summarized in Table 1.
The reaction conditions were 95 °C for 2 min, followed by
35 cycles of 95 °C for 10 s and 65 °C for 15 s. Gene ex-
pression was analyzed using the 2−∆∆Ct method relative to
GAPDH.

Statistical Analysis

Experiments were conducted in triplicate and the con-
tinuous variables are displayed as mean ± SD. Data were
compared between groups using an unpaired t-test. Differ-
ences with a p < 0.05 was considered significant.

Results

DEG Identification

Based on the cutoff value of p < 0.05 and |log2FC|
>0.5, a total of 1309 DEGs were obtained in the propo-
fol vs. control groups, including 539 upregulated and 770
downregulated; 1959 DEGs were obtained in the sevoflu-
rane vs. control groups, including 875 upregulated and
1084 downregulated. A volcano map was used to display
the distribution of DEGs (Fig. 1A). The heatmaps of the
two groups of DEGs are shown in Fig. 1B. A total of 1102
common DEGs were identified between the two groups
(Fig. 1C).

Hub Gene Selection Using WGCNA

The overall correlation between data samples is shown
in Fig. 2A. The clustering of the samples in the dataset was
good; therefore, no samples were excluded. Subsequently,
the sample traits were sorted and added to the clustering dia-
gram to construct a heat map of sample clustering and clini-
cal traits (Fig. 2B). The power value was 14 and the R2 was
approximately 0.85 (Fig. 2C), indicating that the network
was closer to a scale-free distribution. Simultaneously, the
mean value of the adjacency function gradually approached
zero, showing a gradual trend (Fig. 2D). Then, 21 modules
were selected using a system clustering tree (Fig. 2E). A
heatmap of the correlation between the modules and clini-
cal traits is shown in Fig. 2F. The dark red, magenta, green-
yellow, and turquoise modules were positively correlated
with propofol, and the yellow module was negatively cor-
related with the anesthetic. The black and pink modules
positively correlated with sevoflurane, whereas the yellow
module negatively correlated with the anesthetic. Finally,
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Fig. 1. Differentially expressed genes (DEGs) identification. (A) Volcano maps of DEGs in PA (propofol anesthesia) vs. control and
SA (sevoflurane anesthesia) vs. control. (B) Heatmaps of DEGs in PA vs. control and SA vs. control. (C) Venn diagram of DEGs in PA
vs. control and SA vs. control.
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Fig. 2. Hub genes selection by Weighted gene co-expression network analysis (WGCNA). (A) The overall correlation of the data
sample. (B) The heatmap of sample clustering and clinical traits. (C,D) Scale-free soft threshold distribution. (E) Module clustering tree.
(F) Heatmap of correlation between modules and clinical traits.

the yellowmodule that correlated with the sample traits was
selected as the keymodule, which included 1095 hub genes.

DE ZFPRG Screening and Functional Analysis

A total of 2274 ZFPRGs were obtained from the
UniProt database after removing duplicates. Based on 2274
ZFPRGs, 1102 common DEGs, and 1095 hub genes, 24
intersection genes were identified (Fig. 3A). According to
the significance threshold (p < 0.05), 143 GO BP (such
as regulation of transcription, DNA-template, and regula-
tion of RNA biosynthetic process), eight GO CC (such as
the cytoplasmic side of lysosomal membrane and endoplas-
mic reticulum tubular network membrane), and 19 GO MF
(such as metal ion binding, cation binding, and zinc ion
binding) were obtained. The top 10 results are shown in

Fig. 3B–D. The expression levels of the intersecting genes
were obtained from the dataset GSE4386. Combined with
the anesthesia grouping information of the samples, the cor-
relation between the intersecting genes in the anesthesia
samples was calculated. As shown in Fig. 3E, there was
a strong positive correlation between ATL1 and BNC1.

Biomarker Screening Using Machine Learning

Based on the LASSO regression analysis, the mini-
mum error rate was obtained when lambda.min was 0.0996,
and four feature genes (ZNF420, RNF135, BNC2, and
BNC1) were selected (Fig. 4A). Using an SVM, nine char-
acteristic genes (ZNF420, RNF135, ATL1, ZNF813, OSR1,
BNC2, ZNF518A, ZBTB8A, and PRDM6) were identified
(Fig. 4B). In the random forest model, after ranking the vari-
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Fig. 3. Differentially expressed ZFPRGs screening, function analysis and correlation analysis. (A) Venn diagram of 2274 ZFPRGs,
1102 common DEGs, and 1095 hub genes. (B–D) Gene ontology (GO) biological processes (B), cellular components (C) and molec-
ular functions (D) enriched by differentially expressed ZFPRGs. (E) The correlation between differentially expressed ZFPRGs in the
anesthesia samples. “*, **, *** and ****” indicate p < 0.05, <0.01, <0.001 and <0.0001, respectively.

ables (genes) by mean decrease accuracy, the top 10 genes
(OSR1, RNF135, RTP4, ZNF518A, ZNF420, BNC2, BNC1,
PRDM6, ZNF813, and ADAP2) were selected to plot the
lollipop chart (Fig. 4C). The genes screened by the three
machine learning algorithms were intersected using the R
package UpsetR and three biomarkers (ZNF420, RNF135,
and BNC2) were identified (Fig. 4D).

Diagnostic Value, Correlation, and Regulatory Network
Analyses of Biomarkers

ROC analysis of the three biomarkers showed that
the area under curve (AUC) values of all biomarkers were
>0.85, indicating that the biomarkers had the diagnostic
ability to distinguish between the two groups (Fig. 5A).
Additionally, the expression levels of the three biomark-

ers differed significantly between the control and anesthesia
groups (p< 0.0001) (Fig. 5B). Pearson correlation analysis
revealed a strong positive correlation between RNF135 and
BNC2 (Fig. 5C).

A gene-gene functional interaction network of the
three biomarker genes was constructed and other 20 cor-
related genes (DDX58, NLRX1, and NLRC5) were pre-
dicted based on the GeneMANIA database. The proteins
in the network were associated with functions of regulation
of type I interferon production, type I interferon produc-
tion, negative regulation of cytokine production, and others
(Fig. 5D).
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Fig. 4. Biomarkers screening by machine learning. (A–C)
Characteristic genes screening by Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis (A), support vec-
tor machine (SVM) (B) and random forest model (C). Venn dia-
gram of the genes screened by the three machine learning algo-
rithms (D).

Nomogram Construction

Based on the three biomarkers, the sample grouping
information, and marker expression levels, a nomogram
model of the markers was constructed (Fig. 6A). A calibra-
tion curve revealed that the error between the actual anes-

thesia risk and the predicted risk was small, indicating that
the nomogram model had a high prediction accuracy for
sample anesthesia (Fig. 6B). Additionally, the AUC of the
ROC curve for the nomogrammodel was 0.978, further sug-
gesting its effectiveness (Fig. 6C).

GSEA

GSEA was performed to explore the functions of the
biomarkers (Fig. 6D). ZNF420 is associated with func-
tions related to morphogenesis, cardiac myofibril assem-
bly, and centriole assembly. Additionally, it is involved in
the cell cycle, tricarboxylic acid (TCA) cycle, and dilated
cardiomyopathy pathways. RNF135 is enriched in anti-
gen processing and the presentation of exogenous antigen-
related functions and pathways of allograft rejection, oxida-
tive phosphorylation, and neuroactive ligand-receptor inter-
action. BNC2 is also enriched in antigen processing and
presentation of exogenous antigen-related functions. Ad-
ditionally, it is involved in the cell adhesion molecule cam
pathways, oxidative phosphorylation, and olfactory trans-
duction.

MiRNA-mRNA-TF Regulatory Network Construction

Using the Network Analyst database, 67 miRNA-
mRNA and 25 mRNA-TF pairs were predicted. Based
on these miRNA-mRNA and mRNA-TF pairs, miRNAs
and TFs regulated by the same mRNA were screened. Fi-
nally, 425 miRNA-mRNA-TF regulatory pairs were iden-
tified, including 58 miRNAs, 3 mRNAs, and 24 TFs. This
network is shown in Fig. 7A. miR-182-5p and miR-16-
5p simultaneously regulated these three biomarkers. Both
ZNF420 and RNF135were regulated byWT1, and ZNF420
and BNC2 were regulated by MAZ.

Drug Prediction Using Biomarkers

Drugs related to each biomarker were searched in the
CTD database. Ten drugs were obtained: tretinoin, cis-
platin, and estradiol for BNC2; amiodarone and resveratrol
for ZNF420; and tretinoin, cisplatin, and bisphenol A for
RNF135 (Fig. 7B).

Gene Expression Validation in Clinical Samples

The expression of ZNF420, BNC2, and RNF135 was
determined in cardiac tissues using RT-qPCR analysis. The
tissues obtained before anesthesia were considered the con-
trol group, and the tissues obtained after anesthesia were
considered the anesthesia group. The results showed that
ZNF420, BNC2, and RNF135 were all significantly down-
regulated by anesthesia in comparison to controls (all p <

0.05, Fig. 8), which is consistent with the bioinformatics
analysis results.
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Fig. 5. Diagnostic value, correlation, and regulatory network analyses of biomarkers. (A) ROC analysis of three biomarkers. (B)
The expression levels of 3 biomarkers between case and control groups. (C) Pearson correlation analysis among three biomarkers. (D)
The interaction network of model genes predicted based on GeneMANIA database. “****” means p < 0.0001.

Discussion

OPCABG is a form of coronary artery bypass surgery
with some advantages, particularly in decreasing postop-
erative complications and systemic inflammation, such as
myocardial and brain damage [24]. Anesthesia during
OPCABG reduces intraoperative blood loss and the need
for intraoperative blood transfusion, thereby shortening the
length of hospital stay. Importantly, anesthesia reduces
inflammation, myocardial enzyme leakage, and myocar-
dial reperfusion injury by exerting cardioprotective effects
[25]. Anesthetic administration modulates gene expres-

sion to adapt to cardiac surgery in the human heart [1]. It
is inferred that genes with differential expression induced
by anesthetics during cardiovascular surgery may serve as
clinically important cardiovascular biomarkers and help un-
derstand the mechanism underlying the protective effect of
anesthetics on cardiac function. Thus, in the present study,
we conducted an integrated bioinformatics analysis to ex-
plore cardiovascular biomarkers induced by anesthesia dur-
ing OPCABG.

In this study, 24DE ZFPRGswere identified based on
2274 ZFPRGs, 1102 common DEGs, and 1095 hub genes.
Following machine learning, ZNF420, RNF135, and BNC2
were selected as cardiovascular biomarkers. The diagnos-

E748 Heart Surgery Forum

https://journal.hsforum.com/


Fig. 6. Nomogram model construction and gene set enrichment analysis (GSEA) enrichment analysis. (A) nomogram model of
three biomarkers. (B) Calibration curve. (C) ROC curve analysis of the nomogram model. (D) GSEA analysis of the single biomarker
gene based on GO BP terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
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Fig. 7. MiRNA-mRNA-TF regulatory network construction and drug prediction of biomarkers. (A) microRNA (miRNA)-mRNA-
TF (transcription factor) regulatory network constructed by 425 miRNA-mRNA-TF regulatory pairs. A red circle represents a biomarker,
a yellow diamond represents a TF, and a cyan triangle represents a miRNA. (B) Drug-target regulatory network diagram.

E750 Heart Surgery Forum

https://journal.hsforum.com/


Fig. 8. Gene expression validation of biomarker genes in clinical samples. *p < 0.05, **p < 0.01.

tic value and accuracy of the three biomarkers were con-
firmed using ROC curves and nomogram models, suggest-
ing that they were closely related to anesthesia-induced car-
diac function. To the best of our knowledge, none of these
three biomarkers have been reported to be associated with
cardioprotection in previous studies, which indirectly em-
bodies the research value of our study.

ZNF420, the human gene encoding Apak, negatively
affects p53-mediated apoptosis [26]. P53-mediated signal-
ing plays a key role in the apoptosis of cardiomyocytes
induced by ischemia [27], reperfusion [28], and oxida-
tive stress [29]. Cardiac surgery associated with ischemia-
reperfusion injury triggers p53-mediated apoptosis of my-
ocardial cells [29]. Our data suggested that ZNF420 was
expressed at significantly lower levels in cardiac tissues af-
ter cardiac surgery. We inferred that the overexpression of
ZNF420 could exert a protective role by suppressing my-
ocardial apoptosis induced by ischemia-reperfusion [30].
GSEA revealed that ZNF420 was associated with functions
related to cardiac myofibril assembly and was involved in
pathways of the TCA cycle. The TCA cycle is a central
metabolic hub connecting multiple catabolic, anabolic, and
anaplerotic reactions. TCA cycle-related metabolites are
involved in a variety of physiological processes as epige-
netic effectors and regulators of hypoxic responses [31]. In
myocardial ischemia and cardiac injury, hypoxia severely
alters the myocardial mitochondrial TCA cycle flux, re-
duces adenosine triphosphate (ATP) production, and leads
to the intracellular accumulation of TCA cycle interme-
diates [31,32]. In addition, the TCA cycle is associated
with the release of biosynthetic intermediates such as glu-
cose, fatty acids, and non-essential amino acids. Fatty
acids are the major fuel source in the heart under nor-
moxic conditions, whereas glucose is converted into the ba-
sic fuel source during ischemia [33]. High levels of fatty

acid oxidation increase the risk of postoperative contrac-
tile dysfunction [1]. Changes in plasma TCA cycle-related
metabolites have been implicated in an increased risk of
cardiovascular diseases or cardiac damage [34]. Although
there is no evidence regarding the regulatory role of the
TCA cycle, we speculate that ZNF420 may be associated
with cardioprotection in OPCABG by controlling myocar-
dial energy metabolism. Interestingly, RNF135 and BNC2
were enriched in the oxidative phosphorylation pathway.
The heart is the most energy-consuming organ in the body
and requires high levels of mitochondrial oxidative phos-
phorylation [35], which is impaired in the heart under is-
chemia [36,37]. The TRIM-like gene RNF135, which en-
codes a RING finger protein, is the cause of neurofibro-
matosis and its function is unknown [38]. BNC2, a cell
type-specific zinc finger protein, is related to color changes
and the development of several types of cancer [39]. BNC2
is highly expressed in the fetal heart and penis [40] and is
downregulated in myocardial ischemia models [41]. Al-
though there is no direct evidence of the biological func-
tion of RNF135 and BNC2 in ischemic injury, both genes
may exert cardioprotective effects induced by anesthesia
by modulating oxidative phosphorylation in the heart un-
der OPCABG.

To elucidate the regulatory mechanisms of these three
biomarkers, we predicted their miRNAs and TFs and con-
structed a regulatory network. In this network, miR-182-5p
andmiR-16-5p simultaneously regulated the three biomark-
ers, suggesting that these two miRNAs may play critical
regulatory roles. miR-182-5p is expressed at low levels in
cardiomyocytes under hypoxia [42]. Treatment with miR-
182 protects against myocardial ischemia/reperfusion in-
jury by suppressing cell death [43]. MiR-16-5p is over-
expressed in the plasma of patients with ischemic dilated
cardiomyopathy. It also promotes endoplasmic reticulum
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stress-induced inflammation and autophagy in human ven-
tricular myocytes [44]. Recently, Toro et al. [45] demon-
strated that suppressing miR-16-5p expression has the po-
tential to protect the heart from endoplasmic reticulum- and
oxidative stress-induced damage. Taken together, we spec-
ulate that ZNF420, RNF135, and BNC2may be involved in
cardioprotection during OPCABG under the regulation of
miR-182-5p and miR-16-5p.

This study has some limitations that cannot be ig-
nored. First, this study was conducted using DNA mi-
croarray data, which may have limited the sensitivity, ac-
curacy, and reproducibility of the results. Second, owing
to a shortage of clinical samples, the protective effects of
the biomarkers were not verified in clinical samples or cell
lines. Thus, the cardioprotective effect of the biomark-
ers (ZNF420, RNF135, and BNC2) induced by anesthesia
should be further investigated using cell lines and a large
number of clinical samples.

Conclusion

In conclusion, our study identified three anesthesia-
induced zinc finger proteins as cardioprotective biomarkers
(ZNF420, RNF135, and BNC2) in OPCABG. The findings
of this study may provide additional information on cardio-
protection strategies in clinical surgery.
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