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A B S T R AC T

Perioperative stroke occurs in 2-3% of adult cardiac
surgery patients, and significant cognitive dysfunction is
experienced by 40-60% of patients in the first postoperative
week. Perioperative neurocognitive abnormalities are associ-
ated with a greatly increased risk of perioperative mortality,
lengthy intensive care and hospital stay, and more intensive
rehabilitative care. Long-term cognitive dysfunction, ranging
from months to years, occurs in 25-40% of adult cardiac
surgery patients, resulting in a decreased quality of life.

Cerebral emboli are an important cause of perioperative
neurocognitive abnormalities. Aortic cannulation, clamping,
and manipulation during surgery may dislodge atheromatous
materials into the cerebral circulation, leading to periopera-
tive or postoperative stroke. Nevertheless, acute and chronic
neurocognitive dysfunction frequently occurs in non-cardiac
surgery patients as well, suggesting that some element of
surgery and/or anesthesia itself causes or contributes to this
phenomenon.

One possible cause may be central nervous system (CNS)
responses to peripheral tissue injury or inflammation. The
CNS is sensitive to systemic pro-inflammatory mediators
such as endotoxin and the cytokines interleukin-6 and inter-
leukin-8, which are activated by surgical trauma. This article
discusses the behavior and effects of these inflammatory
agents and their intensification in combination with postop-
erative hyperthermia. The potential beneficial role of phar-
macological agents such as heparin, lidocaine, and aprotinin
is also examined.

BAC KG R O U N D

Perioperative stroke occurs in 2-3% of adult cardiac
surgery patients [Almassi 1999, Hogue 1999, John 2000]. In
addition, 40-60% of patients experience significant cognitive
dysfunction in the first postoperative week [Neville 2001,
Newman 2001b]. Perioperative neurocognitive abnormalities
are associated with a five- to ten-fold increase in periopera-

tive mortality, a three- to four-fold increase in intensive care
and/or hospital stay, and a four- to five-fold increase in reha-
bilitative care [Roach 1996, Almassi 1999, Hogue 1999, John
2000]. Long-term cognitive dysfunction, ranging from
months to years, occurs in 25-40% of adult cardiac surgery
patients [van Dijk 2000, Newman 2001b] and is associated
with a decreased quality of life [Newman 2001a].

D I S C U S S I O N

Cerebral emboli are an important cause of perioperative
neurocognitive abnormalities. Transcranial Doppler studies
demonstrate that hundreds of cerebral emboli can occur dur-
ing cardiac surgery [Barbut 1994, Pugsley 1994, Neville
2001]. Greater numbers of cerebral emboli are associated with
a greater incidence of postoperative neurocognitive abnormal-
ities [Barbut 1994, Pugsley 1994, Hammon 1997, Sylivris
1998, Diegeler 2000]. At least three types of cerebral emboli
occur during cardiac surgery: atheroma [Blauth 1992], gas or
air [Pugsley 1994, Borger 2001], and lipid [Brooker 1998,
Brown 1999, Brown 2000]. Atherosclerosis of the ascending
aorta/arch is one of the most significant risk factors for peri-
operative stroke [Roach 1996, Hogue 1999, John 2000]. With
aortic cannulation and clamping, atheromatous debris can be
dislodged into the systemic and cerebral circulations [Barbut
1996]. Aortic manipulations also contribute to postoperative
stroke [Ura 2000]. Although not established by randomized
trials, techniques that decrease disruption of aortic atheroma
(epiaortic scanning, alternative clamp and graft sites) appear to
decrease perioperative neurocognitive abnormalities [Duda
1995, Hammon 1997, Royse 2000]. The nature and severity
of neurologic injuries from other types of emboli are less well
characterized. Although microscopic gas emboli can con-
tribute to postoperative cognitive dysfunction [Pugsley 1994,
Borger 2001], in some studies they appear to have minimal
adverse effect [Grocott 1998, Sylivris 1998, Neville 2001].
The apparent tolerance to microscopic gas emboli may be
due, in part, to the fact that heparin is protective in air
embolism models [Ryu 1996]. Lipid emboli, originating from
cardiotomy blood [Brooker 1998], cause formation of small
capillary and arteriolar dilations (SCADs) [Brooker 1998,
Brown 1999, Brown 2000]. Although pathologic studies do
not show extensive brain injury to be associated with SCADs
[Brown 1999], animal models indicate that fat emboli result in
acute blood-brain barrier dysfunction [Drew 1998]. Gas and
lipid microemboli almost certainly contribute to neurocogni-
tive dysfunction associated with cardiac surgery.
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Nevertheless, emboli are probably not the whole story.
Techniques that decrease cerebral blood flow during car-
diopulmonary bypass (CPB) would be expected to decrease
brain embolic burden and to consistently improve neurocog-
nitive outcomes. They do not. In patients undergoing valve
replacement, propofol-induced electroencephalographic
burst suppression did not improve acute or chronic neu-
rocognitive outcomes [Roach 1999]. Likewise, in patients
undergoing coronary artery bypass (CAB), neurocognitive
outcomes did not differ between hypothermic and normoth-
ermic CPB [Grigore 2001]. Even avoiding CPB altogether,
which should virtually eliminate both gas and lipid microem-
boli, does not significantly decrease chronic cognitive dys-
function when compared to a CPB-based technique [van Dijk
2002]. There must be something in addition to emboli that
contributes to postoperative cognitive dysfunction. In fact,
cognitive dysfunction also occurs after non-cardiac surgery. In
1,218 patients undergoing thoracic, abdominal, or orthopedic
surgery, 26% had cognitive dysfunction one week after
surgery and 10% had cognitive dysfunction three months
later [Moller 1998]. Perioperative hypotension and hypox-
emia were not risk factors. Heyer et al. [Heyer 1995] and
Murkin et al. [Murkin 1995] both observed that cardiac
surgery patients had greater rates of neurocognitive abnor-
malities in the first week after surgery compared to non-
cardiac surgery patients. However, when observed one to two
months later, cardiac and non-cardiac surgery patients had
equivalent rates of cognitive dysfunction. Thus, there is some
element of surgery and/or anesthesia itself that results in, or
contributes to, acute and chronic postoperative cognitive dys-
function—an element that is not unique to cardiac surgery.

One possibility may relate to central nervous system
(CNS) responses to peripheral tissue injury and/or inflamma-
tion. Cardiac surgery and CPB are associated with complement
and neutrophil activation, increased systemic concentrations
of pro-inflammatory cytokines such as interleukin-6 (IL-6)
and IL-8, and frequently endotoxemia [Hall 1997, Hill 1998].
Concentrations of these pro-inflammatory mediators vary
greatly among individuals, probably on a genetic basis (e.g.,
E4 allele [Drabe 2001] or IL-6 gene variants [Burzotta
2001]). Although usually of lesser magnitude, many of these
same systemic inflammatory mediators increase with non-
cardiac surgery as well. IL-6 increases after all types of non-
cardiac surgery [Reber 1998, Wiezer 1999, Bölke 2001] and
appears to be a significant determinant of postoperative recov-
ery [Hall 2001]. IL-8 increases after major intra-abdominal
surgery [Wiezer 1999], and endotoxemia likewise commonly
occurs during and after intra-abdominal surgery [Bölke 2001,
Buttenschoen 2001]. Finally, complement activation occurs in
response to surgical trauma in the absence of CPB [Gu 1999,
Ascione 2000]. The CNS is sensitive to these systemic pro-
inflammatory mediators.

In animals, systemic inflammatory mediators trigger
extensive changes in CNS inflammatory gene expression,
neurochemistry, neuroendocrine status, thermoregulation,
behavior, and cognition [Dantzer 1998, Linthorst 1998,
Brebner 2000]. For example, systemic inflammatory media-
tors trigger expression of IL-1( [Wong 1996, Turrin 2001],

IL-6 [Vallières 1999], tumor necrosis factor-alpha (TNF�)
[Turrin 2001], complement components [Nadeau 2001],
inducible cyclooxygenase (COX-2) [Lacroix 1998], and
inducible nitric oxide synthase (iNOS) [Wong 1996] in the
brain parenchyma, cerebral vasculature, and/or perivascular
microglia. Notably, the glial response to injury increases with
age, resulting in increased brain expression of all of these
inflammatory genes [Kyrkanides 2001]. Acutely, expression of
brain inflammatory genes and microglial activation results in
increased blood-brain barrier permeability [Mayhan 1998,
Tsao 1999], adrenocorticotropic hormone (ACTH), and cor-
tisol secretion, and the induction of fever [Rivest 2000]. The
link between CPB and brain inflammatory gene induction
was recently demonstrated. Compared with surgical controls,
brain COX-2 mRNA expression was increased in rats four
hours after CPB and was proportional to increased post-CPB
systemic IL-6 concentrations [Hindman 2001]. Hence, CNS
responses to systemic inflammatory mediators rapidly alter
CNS gene expression and functional status, and, by their
nature, are likely to augment CNS injury from any coexisting
perioperative neurologic insults [Allan 2001]. Furthermore,
CNS inflammatory gene induction and microglial activation
may have long-term consequences. Recent work suggests that
these processes participate in the pathogenesis of several neu-
rodegenerative diseases, including Alzheimer’s, multiple scle-
rosis, and AIDS dementia complex [González-Scarano 1999,
Gahtan 1999]. Hence, chronic CNS responses to systemic
inflammatory mediators may result in delayed and/or long-
term postoperative CNS dysfunction.

The simultaneous presence of endotoxin and other pro-
inflammatory mediators may be important in determining the
extent of CNS responses to peripheral tissue injury/inflamma-
tion. Extremely minute quantities of endotoxin have direct
effects upon the vasculature (e.g., increasing adhesion molecule
expression) and also are able to greatly increase the production
of inflammatory cytokines and the brain’s response to them
[Vallières 1999]. Three human studies have shown that low
preoperative titers of anti-endotoxin antibodies are associated
with a greater systemic inflammatory response [Rothenburger
2001] and poorer cardiopulmonary outcomes following cardiac
surgery [Bennet-Guerrero 1997, Hamilton-Davies 1997,
Rothenburger 2001]. A recent report likewise indicates that
cognitive dysfunction six weeks after CAB is also related to low
preoperative anti-endotoxin titers [Mathew 2002a].

If the CNS response to systemic inflammatory stimuli
were nothing more than fever, that alone might be sufficient
to significantly worsen neurologic outcomes. Both animal
[Dietrich 1996] and human [Azzimondi 1995] data indicate
that hyperthermia markedly worsens outcomes following a
neurologic insult. Recently, Grocott et al. reported maximum
postoperative temperature following CAB was a significant
independent determinant of cognitive dysfunction six weeks
after surgery [Grocott 2002]. Following non-cardiac surgery,
factors independently related to long-term cognitive dysfunc-
tion were patient age, early postoperative cognitive impairment,
and postoperative infection [Abildstrom 2000]. Postoperative
infection almost certainly is associated with increased sys-
temic inflammatory mediators, endotoxemia, and/or fever.
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Especially provocative is the interaction between endotoxin
exposure and fever. In cell culture, induction of heat shock
proteins (by fever) prior to endotoxin exposure is protective.
In contrast, endotoxin exposure followed by fever results in
apoptosis [Xu 1996]. Therefore, perioperative induction of
CNS inflammatory genes combined with subsequent fever
might, in certain individuals [Tardiff 1997] or circumstances,
initiate apoptosis and/or subacute neurodegeneration. Sup-
port for this hypothesis comes from a rat model of CPB,
where significant up-regulation of apoptotic genes was
observed [Sato 2001]. Simply preventing postoperative fever
may have tremendous neurologic benefits.

Other interventions that decrease systemic and/or CNS
inflammatory responses have the potential to decrease the inci-
dence and severity of postoperative neurocognitive dysfunc-
tion. A recent study observed no relationship between the
systemic inflammatory response and postoperative cognitive
dysfunction after CAB [Westaby 2001]. However, this study
did not measure endotoxin concentrations and likely missed
peak IL-6 and IL-8 concentrations, which occur four to six
hours after surgery. In contrast, Heyer et al. found that
heparin-coated CPB circuits appeared to decrease peak systemic
IL-6 and TNF( levels (20-25%) and significantly improved
cognitive status five days after surgery [Heyer 2002]. Lidocaine
also has recently been recognized as having anti-inflammatory
properties [Hollmann 2000] and has been found to signifi-
cantly decrease neurologic injury in an animal stroke model
[Lei 2001]. In one randomized clinical trial, lidocaine improved
neurocognitive outcomes after cardiac surgery [Mitchell 1999].
Aprotinin also has multiple anti-inflammatory properties [Hill
1995, Hill 1997, Asimakopoulos 2000, Asimakopoulos 2001].
In contrast to lidocaine, in non-CPB animal models of tran-
sient cerebral ischemia, aprotinin did not improve neurologic
outcome [Grocott 1999]. However, in a setting conducive to
heightened systemic inflammatory mediators (e.g., cardiac
surgery and CPB), the anti-inflammatory properties of apro-
tinin may have greater potential to improve CNS outcomes. A
randomized clinical trial studying aprotinin’s effect on cogni-
tive outcomes has recently been completed. Other approaches
to attenuating systemic and/or brain inflammatory responses
are being explored. These include anti-complement antibodies
[Mathew 2002b], gene-based therapy [Ueno 2001], and
cytokine inhibitors [Beech 2001]. The future prospects for
addressing this problem are fascinating and promising.
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