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ABSTRACT

Objectives: The need for mechanical ventilation 24 hours 
after coronary artery bypass grafting (CABG) is considered a 
morbidity by the Society of Thoracic Surgeons. The purpose 
of this investigation was twofold: to identify simple preopera-
tive patient factors independently associated with prolonged 
ventilation and to optimize prediction and early identification 
of patients prone to prolonged ventilation using an artificial 
neural network (ANN).

Methods: Using the institutional Adult Cardiac Database, 
738 patients who underwent CABG since 2005 were reviewed 
for preoperative factors independently associated with pro-
longed postoperative ventilation. Prediction of prolonged 
ventilation from the identified variables was modeled using 
both “traditional” multiple logistic regression and an ANN. 
The two models were compared using Pearson r2 and area 
under the curve (AUC) parameters.

Results: Of 738 included patients, 14% (104/738) 
required mechanical ventilation ≥ 24 hours postoperatively. 
Upon multivariate analysis, higher body-mass index (BMI; 
odds ratio [OR] 1.10 per unit, P < 0.001), lower ejection frac-
tion (OR 0.97 per %, P = 0.01) and use of cardiopulmonary 
bypass (OR 2.59, P = 0.02) were independently predictive of 
prolonged ventilation. The Pearson r2 and AUC of the mul-
tivariate nominal logistic regression model were 0.086 and 
0.698 ± 0.05, respectively; analogous statistics of the ANN 
model were 0.159 and 0.732 ± 0.05, respectively.

BMI, ejection fraction and cardiopulmonary bypass repre-
sent three simple factors that may predict prolonged ventila-
tion after CABG. Early identification of these patients can be 
optimized using an ANN, an emerging paradigm for clinical 
outcomes modeling that may consider complex relationships 
among these variables.

INTRODUCTION

Since its inception in 1989, the Society of Thoracic Sur-
geons (STS) National Adult Cardiac Surgery Database has 
sought to be a comprehensive resource in outcomes after 
coronary artery bypass grafting (CABG). The database has 
over five million records of cardiac surgical operations since 
1990, which reflect the populations of over one thousand 
unique institutions [Shahian 2007; Jacobs 2013]. Through 
the establishment of the Quality Measurement Task Force, 
the STS has also developed a Composite Quality Score con-
sisting of eleven outcome measures within four domains 
[O'Brien 2007]. These domains are operative care, periop-
erative medical care, risk-adjusted mortality and risk-adjusted 
major morbidity. Each of these measures has been endorsed 
by the National Quality Forum [O'Brien 2007; Shahian 2007; 
Jacobs 2013].

Prompt extubation is one such measure of surgical quality, 
and prolonged ventilation, defined as greater than 24 hours 
after CABG, is considered a major morbidity [O'Brien 2007]. 
Increasingly, patients undergoing CABG are being extubated 
within six hours after surgery [Camp 2009]. It is the prac-
tice of several institutions to extubate in the operating room, 
particularly for patients who did not require cardiopulmo-
nary bypass. Early extubation has been successful, with very 
low rates of postoperative cardiorespiratory complications 
and reintubation [Lobdell 2009; Dorsa 2011; Blanco 2012]. 
However, it is accepted that a subset of patients will likely 
require at least twenty-four hours before extubation due to 
myriad preoperative, intraoperative and postoperative factors 
[Hawkes 2003; Siddiqui 2012]. Not only is the prediction of 
those patients who may require prolonged ventilation impor-
tant at the patient-level, but it is critical for proper context 
and risk-adjustment in systems-level outcome analyses in the 
assessment of quality of care. To date, multiple studies have 
identified a panel of preoperative risk factors for prolonged 
ventilation [London 1998; Rady 1999; Cislaghi 2009; Ji 2010; 
Dorsa 2011; Blanco 2012; Ji 2012; Saleh 2012; Shahbazi 
2012; Siddiqui 2012; Totonchi 2014].

An artificial neural network (ANN) is a computational 
construct in which a model is “taught” to predict an outcome 
based on input variables through pattern recognition [Penny 
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1996]. Using a series of training nodes, the model develops 
a robust algorithm and ultimately outputs a prediction. Its 
use as a tool for surgical diagnostic and prognostic modeling 
is emerging. Its benefits lie in its ability to continually adapt 
to newly input patient data, internal validity, less ambiguous 
predictions and higher discriminant ability relative to analo-
gous models derived from traditional multiple regression 
[Yoldas 2012; Cruz-Ramirez 2015; Wise 2015]. In this inves-
tigation, we first aim to determine the most important simple 
and easily available preoperative risk factors for prolonged 
ventilation. Considering these risk factors, we further aim to 
employ ANN modeling to optimize the prediction of pro-
longed ventilation, and to contrast with a traditional multiple 
logistic regression model.

MATERIALS AND METHODS:

Anesthetic, operative and extubation protocols
All patients undergoing CABG were induced with intra-

venous fentanyl, propofol, midazolam, and rocuronium. 
They were subsequently intubated, mechanically venti-
lated, and received general anesthesia with 0.7 to 1 mini-
mum alveolar concentration isoflurane throughout the 
case. Patients received standard and invasive hemodynamic 
monitors, including an intra-arterial catheter for continuous 
blood pressure measurements, central venous access with a 
9-French catheter, and a pulmonary artery catheter for pul-
monary arterial and central venous pressure measurements. 
Patients were prepped and draped in sterile fashion for ster-
notomy and saphenous vein graft harvest. The decision to 
initiate cardiopulmonary bypass was based on hemodynamic 
stability, size of target coronary arteries, and surgeon pref-
erence. Patients who received cardiopulmonary bypass had 
central aortic cannulation and a single stage venous cannula 
placed in the right atrium.

A select group received pump-assist decompression of the 
ventricle without aortic cross-clamp or cardioplegia. The 
remainder received an aortic cross-clamp and underwent full 
arrest with antegrade cardioplegia. Both cardiopulmonary 
bypass groups remained at a temperature between 32 and 34 
degrees Celsius.

Following surgery isoflurane was discontinued and all 
patients were transported intubated with hand-assist ven-
tilation to the cardiovascular intensive care unit (CVICU). 
General anesthesia was maintained with a propofol infusion. 
Upon arrival to the CVICU, propofol was continued for four 
additional hours, and the residual neuromuscular blockade 
was fully reversed within the first hour. A standard CVICU 
ventilator protocol was implemented for all patients following 
CABG. Postoperative mechanical ventilation was achieved 
with pressure regulated volume control with synchronized 
intermittent mandatory ventilation and tidal volume of 7-8 
ml/kg ideal body weight. Adjusting the tidal volume to as low 
as 4-5 ml/kg was accepted to maintain plateau pressures less 
than 30 cm H2O. Respiratory rate was adjusted to maintain 
PCO2 < 55 mmHg with an arterial pH 7.32-7.42. Initial posi-
tive end-expiratory pressure (PEEP) was set at 8 cm H2O in 
an effort to increase surface area for gas exchange.

Patients were assessed for ventilator weaning after four 
hours by the staff attending and nurse practitioners. Per 
protocol, extubation criteria included hemodynamic sta-
bility with minimal inotropic support, body temperature > 
36.5°C, and chest tube blood output < 100 mL/hr. Propofol 
was titrated down for initiation of spontaneous ventilation. At 
this point, ventilation mode was switched to pressure support 
by respiratory therapy staff, which was titrated to maintain 
a tidal volume of a least 5-6 mL/kg ideal body weight. FiO2 
was decreased with a goal of FiO2 of 0.40, and a PEEP of  
5 mmHg while maintaining SpO2 > 94%. CVICU staff phy-
sicians, nurse practitioners, nursing staff, and respiratory 
therapy were all present for discontinuation of mechanical 
ventilation and extubation.

Patient selection
This was a retrospective, single-institution study con-

ducted using the Vanderbilt University Synthetic Derivative, 
a de-identified patient database that mirrors StarPanel, the 
electronic medical record system [Roden 2008]. As no patient 
identifiers are available in this database, the Vanderbilt Uni-
versity Institutional Review Board granted approval with 
waived informed consent. The Synthetic Derivative contains 
the institutional STS database registry with data primarily 
logged since 2005, and cardiac surgical patient cohorts can be 
separated by length of ventilation. The initial search criterion 
for patients who underwent CABG, as indicated by Current 
Procedural Terminology (CPT) code attribution (33517-
33519, 33521-33523, 33514, 33516, 33533-33536), identified 
168 CABG patients requiring, and 751 CABG patients not 
requiring prolonged ventilation, for a total of 919 patients. 
Patients were excluded for operation who received CABG 
outside of the study timeframe (n = 9). Additional exclusion 
criteria include the performance of a concomitant major oper-
ation (ie, valve replacement or repair, carotid endarterectomy; 
n = 146), intubation prior to CABG (n = 8), re-intubation 

Figure 1. Derivation of the 738 patient study cohort.
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required within 24 hours (n = 3) or insufficient information 
in the medical record (n = 22). Derivation of the cohort is 
illustrated in Figure 1. Ultimately, 738 patients were included 
for analysis.

Data collection and analysis
Included patients underwent directed chart review for 

select simple preoperative factors including baseline demo-
graphics and measures that have previously been associated 
with prolonged ventilation. Baseline demographics included 
gender, age, race, and body-mass index (BMI) [London 1998; 
Cislaghi 2009; Ji 2012; Saleh 2012; Shahbazi 2012]. Addition-
ally, diagnosis of chronic obstructive pulmonary disease was 
considered [Cislaghi 2009; Siddiqui 2012]. Previously vali-
dated laboratory studies examined included baseline arterial 
oxygen tension, packed cell volume, glycated hemoglobin 
(as a surrogate for blood glucose control), measures of renal 
function (urea nitrogen and creatinine) and platelet count 
[Dorsa 2011]. Home medications that may plausibly influ-
ence prolonged ventilation were reviewed. Ejection fraction, 
smoking history, inpatient status, use of cardiopulmonary 
bypass and number of target vessels were included as well 
[Cislaghi 2007; Cislaghi 2009; Blanco 2012; Siddiqui 2012]. 
Differences in each of these variables between the two cohorts 
were compared using the Mann-Whitney U test or Fisher’s 
exact test as appropriate. Variables differing at a trend level  
(P ≤ 0.1) on bivariate analysis were input into a forward step-
wise multivariate nominal logistic regression analysis to assess 
for independent association (P ≤ 0.05) with prolonged venti-
lation. Independent predictors of prolonged ventilation were 
used to create predictive models by derivation of a multiple 
logistic regression expression and imputation into a multi-
variable ANN.

In brief, ANN variables are input, with 80% of patients 
randomly selected to comprise a training set to generate a 
prediction algorithm. The remaining 20% are withheld 
to ensure internal validation. The learned model outputs a 

Figure 2. Schematic of the three-variable, three-node artificial neural 
network model for the optimized prediction of prolonged ventilation.

Table 1. Bivariate analysis of postoperatively variables 
correlated with prolonged ventilation.

Extubation < 24 
hours

Prolonged ventila-
tion*

Preoperative Variable (n = 634) (n = 104) P

Demographics

Male gender 72% (454/634) 65% (68/104) .20

Black race 6% (36/608) 3% (3/94) .46

Age (years) 62.6 (55.5-71.1) 
(n = 634)

63.9 (58.1-71.5) 
(n = 104)

.26

Body Mass Index 
(kg/m2)

29.1 (25.8-33.5) 
(n = 308)

33.9 (27.8-40.8) 
(n = 42)

<.001

COPD 6% (35/634) 8% (8/104) .37

Preoperative laboratory studies

White blood cell 
count (x106/mL)

7.3 (6.2-9.0) 
(n = 625)

8.0 (6.5-10.1) 
(n = 104)

.01

Packed cell volume (%) 41 (37-44)(n = 629) 40 (35-43)(n = 104) .06

Platelet count (x106/mL) 211 (176-253) 
(n = 627)

216 (175-266) 
(n = 104)

.29

Urea nitrogen (mg/dL) 15 (11-20)(n = 622) 17 (12-24)(n = 101) .004

Creatinine (mg/dL) 0.97 (0.80-1.12) 
(n = 621)

1.00 (0.83-1.26) 
(n = 101)

.09

HgbA1c (%) 6.1 (5.7-7.1) 
(n = 589)

6.4 (5.9-7.3) 
(n = 85)

.04

PaO
2
 (mm Hg) 79 (71-91)(n = 229) 74 (67-82)(n = 33) .006

Home Medications

Aspirin 55% (349/634) 42% (41/97) .02

Clopidogrel 21% (122/592) 20% (19/97) .89

Beta blocker 46% (271/592) 40% (39/97) .32

Calcium channel blocker 21% (126/592) 9% (9/97) .005

Nitrate 23% (138/592) 21% (20/97) .60

Statin 51% (299/592) 39% (38/97) .05

Diuretics 31% (183/592) 25% (24/97) .23

ACE inhibitor or ARB2 54% (320/592) 38% (37/97) .004

Additional Factors

Inpatient status 73% (462/631) 78% (80/102) .33

Current smoker 36% (220/614) 37% (37/100) .82

Ever Smoker 65% (396/614) 60% (60/100) .43

Ejection fraction (%) 55 (45-60)(n = 579) 50 (35-55)(n = 98) <.001

Use of cardiopulmo-
nary bypass

56% (351/632) 79% (75/95) <.001

Number of vessels 3 (2-3)(n = 633) 3 (2-3)(n = 104) .65

P values obtained via Mann-Whitney U test or Fisher’s exact test, as appropriate.
*Prolonged ventilation: ≥24 hours
†ACE, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor 
blocker
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score between 0 (lowest probability) and 1 (highest prob-
ability), reflecting the probability of prolonged ventilation 
[Wise 2015]. To prevent over-fitting the data, a back-prop-
agation ANN with k-fold validation was used. Three nodes, 
each assigned a learning value of 0.333 were used, and the 
model was trained with three iterations. The full mathemati-
cal description of ANN methodology has been previously 
reviewed [Piaggi 2010; Dumont 2011]. A schematic represen-
tation of the ANN model is illustrated in Figure 2. Actual 
versus predicted outcome plots, as well as receiver-operating 
characteristic (ROC) curves were generated for both models, 
using Pearson r2 and area under the curve (AUC, expressed 
as AUC ± standard error)[Cook 2007] as primary measures of 
each model’s discriminant ability [Wise 2015].

Bivariate and multivariate analysis was performed using 
GraphPad Prism 5 (La Jolla, CA) and JMP Pro 11 (Cary, 
NC). Graphical generation was performed using GraphPad 
Prism 5, and ANN modeling was performed using JMP Pro 
11. Measures of central tendency were reported as median 
(interquartile range). The level of evidence used to denote 
statistical significance was P ≤ 0.05.

RESULTS

The study population totaled 738 evaluable CABG 
patients. Of the 738 patients, 71% were male, 6% were black, 
the median age was 62.8 (56.0-71.1) years and median BMI 

was 29.5 (25.8-34.4) kg/m2. The baseline patient demograph-
ics and characteristics, contrasted in bivariate fashion between 
the two patient cohorts, are reported in Table 1.

Differences (at P ≤ 0.1) between the two groups were found 
for 12 variables, including BMI (P < 0.001), white blood cell 
count (P = 0.01), packed cell volume (P = 0.06), urea nitro-
gen (P = 0.004), creatinine (P = 0.09), glycated hemoglobin  
(P = 0.04), arterial oxygen partial pressure (P = 0.006), aspirin 
use (P = 0.02), calcium channel blocker use (P = 0.005), statin 
use (P = 0.05), angiotensin-converting enzyme inhibitor or 
angiotensin receptor blocker use (P = 0.004), ejection fraction 
(P < 0.001) and use of cardiopulmonary bypass (P < 0.001).

Subsequent multivariate analysis was performed. Indepen-
dent preoperative predictors of prolonged ventilation after 
CABG included higher BMI (odds ratio 1.10 per unit BMI,  
P < 0.001), depressed ejection fraction (odds ratio 0.97 per 
percent ejection fraction, P = 0.01) and use of cardiopulmo-
nary bypass (odds ratio 2.59, P = 0.02). Full results of the mul-
tivariate analysis are reported in Table 2.

Considering the variables BMI, ejection fraction and use 
of cardiopulmonary bypass, a multiple logistic regression 
expression was derived and the ANN model was created. 
Actual versus predicted outcome plots for both models are 
shown in Figure 3.

The Pearson r2 values of the multiple logistic regression and 
ANN models were 0.086 and 0.159. Prediction of prolonged 
ventilation for both models was also assessed via ROC curve 
generation, seen in Figure 4. The AUC values for the multiple 
logistic regression, ANN training set and ANN validation set 
ROC curves were 0.698, 0.732 and 0.714, respectively. The 
ANN ROC curve was significantly more discriminant than that 
obtained from the multiple logistic regression model.

DISCUSSION

Timely extubation after CABG is important, as it may lead 
to more rapid recovery, shorter intensive care requirements, 
and reduced costs of hospitalization. The STS has defined 
prolonged ventilation as an excess of 24 hours postopera-
tively. Variance in length of mechanical ventilation is primar-
ily governed by preoperative patient factors [Saleh 2012]. As 
such, our study identified three key independent risk factors 
for prolonged ventilation, and sought to optimize the ability 
to predict prolonged ventilation using an ANN model.

Within our cohort we found that higher BMI, depressed 
ejection fraction, and use of cardiopulmonary bypass were 
associated with prolonged ventilation after CABG. The asso-
ciation of elevated BMI and prolonged ventilation has been 
demonstrated in other studies [Kuduvalli 2002; Murthy 2007; 
Perrotta 2007], and most recently, by Saleh et al. in 2012, 
in which patients with a BMI > 35 kg/m2 had a significantly 
increased risk of ventilation requirement of greater than 72 
hours [Saleh 2012]. This finding is likely due to impaired 
chest wall mechanics of respiration, leading to difficulty in 
gas exchange and subsequent delay in meeting extubation 
parameters [Leme Silva 2012]. Additionally, obese patients 
have greater airway inflammation and hyper-responsiveness 
at baseline, and may require more sophisticated ventilator 

Table 2. Forward stepwise multivariate nominal logistic 
regression analysis for independent predictors of prolonged 
extubation.

Preoperative Variable OR (95% CI) P 

Body Mass Index (kg/m2) 1.10 (1.05, 1.16) <.001

White blood cell count (x106/mL) 1.06 (0.94, 1.16) .28

Packed cell volume (%) 0.94 (0.88, 1.01) .08

Urea nitrogen (mg/dL) - -

Creatinine (mg/dL) - -

HgbA1c (%) - -

PaO
2
 (mm Hg) - -

Aspirin 0.86 (0.41, 1.83) .69

Calcium channel blocker - -

Statin - -

ACE inhibitor or ARB* - -

Ejection fraction 0.97 (0.94, 0.99) .01

Use of cardiopulmonary bypass 2.59 (1.21, 5.97) .02

n = 330, r2 = .13, Chi square = 30.6, P < 0.001.
Dashes indicate variable was dropped upon stepwise regression. Odds ratios 
expressed per unit increase in regressor.
*ACE, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor 
blocker
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management leading up to extubation [Leme Silva 2012]. 
This finding could also be due to the association of elevated 
BMI with a lengthier, more difficult operation.

Depressed ejection fraction has been validated as a predic-
tor of prolonged ventilation after CABG. Cislaghi et al. and 
Blanco et al. found that a preoperative ejection fraction of 
30% or less conferred increased risks of ventilation beyond 
twelve hours and inability to extubate in the operating room 
following a CABG procedure, respectively [Cislaghi 2009; 
Blanco 2012]. An imperfect clinical surrogate for depressed 
ejection fraction, preoperative congestive heart failure, was 
found to be a risk factor for ventilator dependency in a Chi-
nese cohort [Ji 2012]. Mild pulmonary edema is very common 
in CABG patients, particularly those who required cardiopul-
monary bypass [Cislaghi 2009]. Ji et al. argued that patients 
with congestive heart failure were more likely to have post-
operative hypoxemia, perhaps due to more severe pre-exist-
ing pulmonary interstitial edema [Ji 2012]. In our analysis, 
ejection fraction was considered as a continuous variable, and 
was shown to independently and inversely predict prolonged 
ventilation after CABG.

Prospective randomized trials have failed to demonstrate a 
benefit to off-pump CABG with respect to short-term rates 
of death, myocardial infarction, stroke, or new renal failure 
[Lamy 2012; Moller 2012; Lamy 2013]. However, several ben-
efits to off-pump surgery include improved organ protection 
[Sepehripour 2014], reduced postoperative stroke [Sa 2012; 
Vasques 2013], and reduced postoperative atrial fibrillation 
[Moller 2008]. Cardiopulmonary bypass can generate a sys-
temic inflammatory response, cause reperfusion injury upon 
cessation, and promote generation of reactive oxygen species 
[Ji 2010; Huffmyer 2015]. As such, one additional benefit of 
off-pump CABG is a decreased ventilation requirement. In 
the cohorts of Cislaghi et al. and Ji et al., cardiopulmonary 

bypass time was found to be in direct proportion to prolonged 
ventilation requirements [Cislaghi 2009; Ji 2010]. Non-use 
of cardiopulmonary bypass also predicted successful extuba-
tion in the operating room [Blanco 2012]. Our data, in paral-
lel with prior studies, implicate the use of cardiopulmonary 
bypass as an independent risk factor for prolonged ventilation.

Our data did not detect the association of several key 
factors with prolonged ventilation – notably, advanced 
age. Advanced age is an established predictor of both pro-
longed ventilation and extubation failure in a diverse series 
of cohorts, particularly in those over the age of 65 [London 
1998; Rady 1999; Cislaghi 2009; Saleh 2012; Shahbazi 2012]. 
Arterial oxygen tension on room air is routinely obtained 
during preoperative assessment if feasible. A low value may 
suggest chronic obstructive pulmonary disease or poor car-
diopulmonary reserve, pathologies that may be exacerbated 
immediately postoperatively and during the period of ventila-
tor weaning [Ji 2010; Siddiqui 2012]. Similarly, anemia and 
renal impairment have also been shown to predict ventilator 
dependency [Rady 1999; Cislaghi 2009; Dorsa 2011; Ji 2012; 
Saleh 2012; Siddiqui 2012; Totonchi 2014]. In our study, arte-
rial oxygen tension, anemia (packed cell volume), and renal 
function (blood urea nitrogen) were all correlated with pro-
longed ventilation, although these metrics lost independent 
significance upon multivariate analysis.

The three identified independent predictors were modeled 
in two different ways. Traditional multiple logistic regres-
sion assigns a weight for each input variable and outputs a 
score that corresponds to the likelihood of an event – in this 
instance, prolonged ventilation. Ostensibly, determination 
of prolonged ventilation is more nuanced, and imputation of 
these variables in the ANN allows for improved recognition 
of the patterns and interactions among variables. In our study, 
the ANN algorithm, while far more complex, generated an 

Figure 3. Actual versus Predicted outcome scatterplots for prediction of prolonged ventilation
A. Multiple logistic regression: n = 331, r2 = .086; B. Artificial neural network training set algorithm (applied to patients from both training and validation sets): 
n = 331, r2 = .159.
0 reflects rapid extubation, 1 reflects prolonged ventilation (≥ 24 hours postoperatively). Simple linear regression lines shown with 95% confidence band.
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internally validated predictive model that was superior to that 
derived by multiple logistic regression as characterized by the 
Pearson r2 value and AUC. Despite its sophistication, ANN 
algorithms are well suited for use in generation of a widely 
available online based risk estimator, or for programming as 
a platform within an electronic medical record [Wise 2015]. 
The algorithm may also evolve and gain predictive power as 
further data is collected and input into the model.

Though the use of ANN in clinical medicine is thus far 
limited, it holds promise as a powerful prognostic tool. The 
current applications include assistance in the accurate diag-
nosis of acute appendicitis, detection of cervical cancer, and 
prediction of vasospasm after subarachnoid hemorrhage 
[Koss 1994; Prabhudesai 2008; Dumont 2011; Yoldas 2012]. 
ANN provides less ambiguous likelihood predictions for 
binary outcomes; as such, a well-validated ANN model is 
inimitably suited to the surgical field, particularly in deter-
mining futility of surgery preoperatively [Wise 2015]. In 
this study, as demonstrated by improved descriptive statis-
tics of the ANN model, this methodology is uniquely suited 
to model the complex relationship among BMI, ejection 
fraction, and use of CPB to optimize the prediction of pro-
longed ventilation.

While revealing, our study was subject to limitations, 
primarily the considerable selection bias inherent in retro-
spective data collection and lack of external validation, as 
only patients representing the demographics and periopera-
tive protocols within a single institution were considered. 
This ANN algorithm would certainly benefit from valida-
tion using national STS database information or from data 
from other high-volume institutions. Camp et al. report 
that extubation within nine hours postoperatively was the 

optimal cut-off for improved postoperative outcomes. Our 
use of 24 hours, while influenced by STS guidelines, may 
not, therefore, constitute the best measure of prolonged ven-
tilation [Camp 2009]. Next, this model only considered the 
contribution of preoperative factors in predicting prolonged 
ventilation, ignoring the variance to the outcome contrib-
uted by intraoperative and postoperative factors. All patients 
were largely afforded similar perioperative treatment. How-
ever, the preferences, experience and abilities among provid-
ers were not uniform, a drawback inherent to most previ-
ous studies as well [London 1998]. Moreover, preoperative 
complexity of coronary artery disease pathology using a 
standardized assessment (eg, SYNTAX score) was not uti-
lized, as the detailed pathology of coronary disease required 
was not available within the de-identified database; rather, 
only the number of vessels intervened upon was considered. 
Finally, while short-term repercussions are well character-
ized, the impact of prolonged ventilation after discharge 
remains to be fully appreciated. However, improved survival 
up to sixteen months postoperatively has been associated 
with prompt extubation [London 1998; O'Brien 2007; Camp 
2009; Lobdell 2012; Saleh 2012; Shahbazi 2012].

CONCLUSION

Despite the limitations, our data reveal the association 
of high BMI, low ejection fraction, and use of cardiopulmo-
nary bypass with prolonged ventilation after CABG. Using 
these variables to optimize prediction of prolonged ventila-
tion can be improved by use of an ANN, providing optimal 
perioperative prognostic guidance for patients and the clini-
cal care team.

Figure 4. Receiver operating characteristic curves for prediction of prolonged ventilation
A. Multiple logistic regression algorithm: n = 331, AUC = .698. B. Artificial neural network training set algorithm: solid line reflects training set (n = 265, AUC 
= .732), dashed line reflects validation set (n = 66, AUC = .714). 
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