Long-term Results of Surgical Lead Implantation for Biventricular Pacemakers in Cardiomyopathy Patients

Robert Jones,1 Michael Harostock, MD,2 Bryan McDonnell, MD,2 Joseph Briskie, DO2

1Cornell University, Ithaca, New York, USA; 2Wilkes-Barre General Hospital, Wilkes-Barre, Pennsylvania, USA

ABSTRACT

Patients with congestive heart failure commonly display dysynchronous contraction patterns and weakened cardiac performance. Cardiac resynchronization therapy from biventricular pacing has been proven effective using coronary sinus cannulation or a less common surgical approach. In this study, the beneficial effects of implanting biventricular leads using the surgical approach for New York Heart Association functional class 3 or 4 patients (mean, 3.4 ± 0.5) were evaluated in 19 patients (17 male, 2 female). Pacing thresholds after 2 years were deemed favorable (left ventricle, 2.1 ± 0.8 V; right ventricle, 1.1 ± 0.4 V). Dobutamine therapy was no longer needed in 2 patients after they underwent biventricular pacing. No mortality or morbidity resulted from the procedure, and 2 patients were readmitted to the hospital, once each after the procedure over the 2-year follow-up period. The data show that the surgical approach for cardiac resynchronization therapy has durable long-term results.

INTRODUCTION

In an observational study we reported in October 2002, surgical lead implantation of a left ventricular (LV) epicardial lead had several advantages over the endovascular technique. There were no failures of implantation, no lead dislodgments or need for reimplantation, and no mortalities. There were no nonresponders. Surgically implanting the leads greatly decreased fluoroscopy times (less than 5 minutes), allowed for a 100% implantation rate, and caused no coronary sinus complications or cases of diaphragmatic pacing [Harostock 2002]. The endovascular method commonly has a fluoroscopy time of 26 to 28 minutes, an 8% to 30% failure rate, and a 25% necessary reimplantation rate [Cazeau 1996; Daubert 1998; Reuter 2002; Yu 2002]. Another nearly identical study with a larger sample size published in 2005 from the Cleveland Clinic showed comparable results. The authors of that article concluded that surgical LV lead implantation can be considered a primary option for resynchronization therapy [Navia 2005]. The aim of this study was to assess the long-term durability of the surgically implanted leads and to measure the long-term effect on cardiac performance.

METHODS

Patient Population

The study group included 19 patients, 17 men and 2 women, whose ages ranged from 41 to 83 years. All patients underwent biventricular pacemaker implantation using the minithoracotomy approach described above. The mean age was 68.7 ± 11.9. Drug therapy using a combination of angiotensin receptor blockers, beta blockers, diuretics, and ACE inhibitors had proven ineffective in sufficiently decreasing congestive heart failure symptoms. All patients had been receiving drug treatment prior to referral for 4.2 ± 2.2 years. Four patients were on outpatient dobutamine therapy. To be considered for inclusion in the study, patients must have displayed a QRS interval >130 ms and left ventricular ejection fraction (LVEF) <30%. The mean QRS interval was 162.2 ± 18.6 ms; the mean LVEF was 16.8 ± 4.4%. Patients who underwent the procedure commonly suffered from pulmonary edema (n = 3), tachycardia or bradycardia (n = 6), atrial fibrillation (n = 8), or mitral regurgitation (n = 8). Extended clinical patient data are displayed in Table 1.

Postoperatively, the study group was followed for 24 months. Electrocardiographic data, pacemaker data obtained by generator interrogation, instances of mortality, and implanted lead data were analyzed and compared to equivalent values incurred when the endovascular approach was used to determine the long-term efficacy of the surgical approach. Baseline, postoperative and 2-year clinical data of the study population are shown in Table 2.

Implantation Procedure

St. Jude Medical Integrity ADx-XL DDDR pacemakers (St. Paul, MN, USA), connected to biventricular adapters, were used in all patients. The patient was placed in the supine position with a roll placed under the left thorax and the left
QRS duration, ms 162.2
Ejection fraction, % 6.8
Baseline medications
Cardiac arrhythmias 6 (31.6)
Mitral regurgitation 8 (42.1)
Atrial fibrillation 8 (42.1)
Left bundle branch block 7 (36.8)

Etiology of cardiomyopathy
Ischemic 13 (68.4)
Nonischemic 6 (31.6)
Left bundle branch block 7 (36.8)
Atrial fibrillation 8 (42.1)
Mitral regurgitation 8 (42.1)
Cardiac arrhythmias 6 (31.6)
Baseline medications
Outpatient dobutamine 4 (21.0)
Antiarrhythmic agents 7 (36.8)
Beta blockers 11 (57.9)
ACE inhibitors 13 (68.4)

*Data are presented as mean ± standard deviation or number (percentage) unless otherwise noted.

Table 1. Clinical Characteristics of the Patient Population (N = 19)*

<table>
<thead>
<tr>
<th>Age, y</th>
<th>68.7 ± 11.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>17 (89.5)</td>
</tr>
<tr>
<td>Female</td>
<td>2 (10.5)</td>
</tr>
<tr>
<td>NYHA class</td>
<td></td>
</tr>
<tr>
<td>3.4 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>16.8 ± 4.4</td>
</tr>
<tr>
<td>QRS duration, ms</td>
<td>162.2 ± 18.6</td>
</tr>
<tr>
<td>PR interval, ms</td>
<td>201.6 ± 29.3</td>
</tr>
</tbody>
</table>

Etiology of cardiomyopathy:
- Ischemic: 13 (68.4%)
- Nonischemic: 6 (31.6%)
- Left bundle branch block: 7 (36.8%)
- Atrial fibrillation: 8 (42.1%)
- Mitral regurgitation: 8 (42.1%)
- Cardiac arrhythmias: 6 (31.6%)

Baseline medications:
- Outpatient dobutamine: 4 (21.0%)
- Antiarrhythmic agents: 7 (36.8%)
- Beta blockers: 11 (57.9%)
- ACE inhibitors: 13 (68.4%)

No mortalities were observed postoperatively before the patients were discharged [Harrostock 2002]. Two patients died before 2-year data could be recorded. There were no lead dislodgements in any patients who underwent surgical biventricular pacemaker implantation over the 24-month period.

Two patients (10.5%) were readmitted to the hospital 2 times for cardiac-related problems; 3 other patients (15.8%) were readmitted to the hospital one time, although the hospital readmissions were not related to congestive heart failure. The other 14 patients did not need to be readmitted at all within the 2-year study period. Of the 4 patients (21.1%) receiving dobutamine therapy preoperatively, one was stopped prior to discharge (5.3%) and 2 (10.5%) were still receiving the therapy at the 2-year follow-up mark. Extended clinical 2-year follow-up data are shown in Table 2.

24-Month Device Outcomes: Implanted Lead Durability and Pacemaker Function

Since no lead dislodgements resulted, postoperative follow-up pacemaker data for all 19 patients was collected. Two-year data for 17 patients were available. The mean right ventricle threshold immediately following the procedure was 0.46 ± 0.2 V with a pulse width of 0.7 ± 0.3 ms and impedance of 358.6 ± 156.5 Ω. Over 2 years, that mean increased to 1.1 ± 0.4 V with a pulse width of 0.6 ± 0.1 ms and impedance of 240.0 ± 59.4 Ω.
The mean LV threshold was 0.8 ± 0.1 V with a pulse width of 0.6 ± 0.2 ms and impedance of 368.1 ± 153.0 Ω. Over 2 years, it increased to 2.1 ± 0.8 V with a pulse width of 0.6 ± 0.1 ms and impedance of 236.0 ± 47.0 Ω. The remaining battery longevity at the 2-year mark was measured to be 2.5 ± 0.9 years.

Cardiac performance improved in all 19 cases. The mean ejection fraction was 16.8 ± 4.4% before implantation, 26.1 ± 5.8% immediately after implantation, and 37.1 ± 9.3% at the 2-year mark. This indicates a 117.6% increase in ejection fraction after 2 years. The mean NYHA class decreased from 3.4 ± 0.5 prior to implantation to 2.5 ± 0.6 after implantation and 2.2 ± 0.5 after 2 years (Figure).

DISCUSSION

The benefits of biventricular pacing have been established [Walker 2000; Abraham 2002; Cazeau 2002; Yu 2002]. Ongoing studies have corroborated these benefits. We introduce data that represent a follow-up analysis from a previously presented patient cohort described in our study from 2002. Our current study represents an ongoing analysis of the surgical approach to biventricular pacemaker implantation.

Our data continue to demonstrate the benefits of biventricular pacing in general and the surgical approach in particular. There continues to be no failures of lead implantation, we have not yet had to reimplant a lead, and the current mortality rate is 0. No patients have yet been returned to the operating room for bleeding.

As presented in 2002, we have been able to establish adequate thresholds at the initial procedure. Our current data as presented confirm the maintenance of these thresholds over a 2-year period of follow-up. These lead thresholds are without drug-eluting tipped screw-in leads. Notably, the threshold data presented by Alonso et al using steroid-eluting

Table 2. Baseline, Postoperative, and 2-Year Data for Patients Who Underwent Biventricular Pacing*

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Postoperative</th>
<th>2-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York Heart Association functional class</td>
<td>3.4 ± 0.5</td>
<td>2.5 ± 0.6</td>
<td>2.2 ± 0.5†</td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>16.8 ± 4.4</td>
<td>26.1 ± 5.8</td>
<td>37.1 ± 9.3‡</td>
</tr>
<tr>
<td>Left bundle branch block</td>
<td>7 (36.8)</td>
<td>6 (31.5)</td>
<td>5 (26.3)</td>
</tr>
<tr>
<td>Pacemaker thresholds, volts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ventricular</td>
<td>—</td>
<td>0.5 ± 0.2</td>
<td>1.1 ± 0.4‡</td>
</tr>
<tr>
<td>Left ventricular</td>
<td>—</td>
<td>0.8 ± 0.1</td>
<td>0.7 ± 0.1†</td>
</tr>
<tr>
<td>Pulse width, ms</td>
<td></td>
<td>0.8 ± 0.3</td>
<td>0.6 ± 0.1†</td>
</tr>
<tr>
<td>Right ventricular</td>
<td></td>
<td>0.7 ± 0.3</td>
<td>0.6 ± 0.1†</td>
</tr>
<tr>
<td>Left ventricular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead impedance, ohms</td>
<td></td>
<td>358.6 ± 156.5</td>
<td>240.0 ± 59.4§</td>
</tr>
<tr>
<td>Right ventricular</td>
<td></td>
<td>368.1 ± 153.0</td>
<td>236.0 ± 47.1‡</td>
</tr>
<tr>
<td>Estimated battery life, y</td>
<td></td>
<td></td>
<td>2.5 ± 0.9</td>
</tr>
<tr>
<td>Total hospital readmission</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

*Data are presented as mean ± standard deviation or number (percentage) unless otherwise noted.
†P < .0001.
‡P = .001.
§P = .002.
endovascularly placed leads showed comparable thresholds at 3 months and 24 months [Alonso 2001].

The surgical lead implantation thresholds later demonstrate the durability of our chosen technique. Its utility is certainly validated when the implantation techniques have been shown to be more successful than the endovascular approach and the results proven durable over a 2-year period.

As echocardiographically guided AV optimization was cumbersome and its value undemonstrated during the beginning of our gathering of the patient population in 2001, the AV delay on dual-chamber biventricular devices was set at 100 ms to prevent intrinsic AV conduction. There is little long-term ejection fraction data after CRT. The lack of any nonresponders in our study may be attributed to the accessibility of the LV anatomy surgically, whereas endovascular placement of the LV lead is limited to the course of the cardiac veins. The surgical approach to CRT will allow for a multiplicity of pacing sites to be evaluated. It has been shown to have durable results along with implantation advantages. We strongly consider surgical implantation as a primary technique for resynchronization therapy.

Study Limitations

Although this study reports the data we acquired 2 years postoperatively, we have no 2-year data from studies using the endovascular approach, making it difficult to provide direct, statistically sound comparisons of the 2 sets of results. Our institution does not have an electrophysiology lab from which we can guarantee comprehensive data; therefore, we must use data reported in the literature. The costs associated with pulmonary artery lines, thoracotomy techniques, and transesophageal echocardiography were unavailable to us. Our sample size was relatively small and contained a disproportionate number of men (89.5%).

Conclusion

Cardiac resynchronization therapy is a well-established treatment for a subset of patients with congestive heart failure. The surgical approach has received recognition in the literature for its safety and success. Our study indicates the results of surgical implantation are durable at 24 months.

ACKNOWLEDGMENT

A great debt of gratitude is owed to Thomas McGrath, a representative of St. Jude Medical, who has provided countless hours in retrieving data.

REFERENCES

